535 references, last updated Wed Oct 7 15:00:26 1998

[1]
Knut Aagaard. The Beaufort Undercurrent. In P. W. Barnes, D. M. Schell, and E. Reimnitz, editors, The Alaskan Beaufort Sea, pages 47-71. Academic Press, Inc., 1984.

[2]
K. Aagaard and E. C. Carmack. The role of sea ice and other fresh water in the arctic circulation. JGR, 94:14,485-14,498, 1989.

[3]
K. Aagaard, C. H. Pease, A. T. Roach, and S. A. Salo. Beaufort Sea mesoscale circulation study--Final Report. Technical Report ERL PMEL-90, NOAA, 1989.

[4]
K. Aagaard, A. T. Roach, and J. D. Schumacher. On the wind-driven variability of the flow through Bering Strait. J. Geophys. Res., 90:7213-7221, 1985.

[5]
R. F. Adler, G. J. Huffman, and P. R. Keehn. Global rain estimates from microwave-adjusted geosynchronous IR data. Remote Sens. Rev., 11:125-152, 1994.

[6]
M. Ahran. The North Atlantic Current and Subarctic Intermediate Water. J. Marine Res., 48:109-144, 1990.

[7]
C. A. Alessi, S. J. Lentz, and R. C. Beardsley. Shelf Mixed Layer Experiment (SMILE) program description and coastal and moored array data report. Technical Report 91-39, WHOI, 1991.

[8]
B. A. Albrecht. Parameterization of trade-cumulus cloud amounts. J. Atmos. Sci., 38:97-105, 1981.

[9]
B. A. Albrecht, C. S. Bretherton, D. Johnson, W. Schubert, and A. S. Frisch. The Atlantic Stratocumulus Transition Experiment (ASTEX). Bull. Amer. Meteor. Soc., in press, 1995.

[10]
J. R. L. Allen. Palaeowind: geological criteria for direction and strength. In et al. Allen, J. R. L., editor, Palaeoclimate and Their Modelling: With Special Reference to the Mesozoic Era, pages 27-34. Chapman & Hall, 1994.

[11]
J. Allender, T. Andunson, S. F. Barstow, S. Bjerken, H. E. Krogstad, P. Steinbakke, L. Vartdal, L. E. Borgman, and C. Graham. The WADIC project: A comprehensive field evaluation of directional wave instrumentation. Ocean Eng., 16:505-536, 1989.

[12]
R. B. Alley. Multiple steady states in ice-water-till systems. Annals of Glaciology, 14:1-5, 1990.

[13]
R. B. Alley and et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362:527-529, 1993.

[14]
L. W. Alvarez, W. Alvarez, F. Asara, and H. Michel. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208:1095-1108, 1980.

[15]
AMODE-MST Group. Moving ship tomography in the North Atlantic. EOS, Trans. Am. Geophys. Union, 75:17,21,23, 1994.

[16]
Meinrat O. Andreae, Jack Fishman, and Janette Lindesay. The Southern Tropical Atlantic Region Experiment (STARE): Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE-A) and Southern African Fire-Atmosphere Research Initiative (SAFARI): An introduction. J. Geophys. Res., 101:23,519-23,520, 1996.

[17]
D. G. Andrews and M. E. McIntyre. Wave-action and its relatives. J. Fluid Mech., 89:647-664, 1978.

[18]
J. L. Angell and J. Korshover. Quasi-biennial and long-term fluctuations in the centers of action. Month. Weath. Rev., 102:669--?, 1974.

[19]
P. A. Arkin and B. N. Meisner. The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982-1984. Mon. Wea. Rev., 115:51-74, 1987.

[20]
P. A. Arkin and P. Xie. The Global Precipitation Climatology Project: First algorithm intercomparison project. BAMS, 75:401-419, 1994.

[21]
R. A. Arnone, D. E. Wiesenburg, and K. D. Saunders. The origin and characteristics of the Algerian Current. J. Geophys. Res., 95:1587-1598, 1990.

[22]
G. Asrar, S. G. Tilford, and D. M. Butler. Mission to Planet Earth: Earth Observing System. Global and Planetary Change, 6:3-8, 1992.

[23]
M. Astraldi, G. P. Gasparini, G. M. R. Manzella, and T. S. Hopkins. Temporal variability of currents in the Eastern Ligurian Sea. J. Geophys. Res., 95:1515-1522, 1990.

[24]
L. P. Atkinson, K. H. Brink, R. E. Davis, B. H. Jones, T. Paluszkiewicz, and D. W. Stuart. Mesoscale variability in the vicinity of points Conception and Arguello during April-May 1983: The OPUS 1983 Experiment. J. Geophys. Res., 91:12899-12918, 1986.

[25]
A. Baggeroer and W. H. Munk. The Heard Island Feasibility Test. Physics Today, 45:22-30, 1992.

[26]
B. R. Barkstrom. The Earth Radiation Budget Experiment (ERBE). BAMS, 65:1170-1185, 1984.

[27]
Charles C. Bates. Utilization of wave forecasting in the invasions of Normandy, Burma and Japan. Annals of the New York Academy of Sciences, 51:545-572, 1949.

[28]
R. C. Beardsley, W. C. Boicourt, L. C. Huff, J. R. McCullough, and J. Scott. CMICE: a near-surface current meter intercomparison experiment. Deep-Sea Res., 28A:1577-1603, 1981.

[29]
D. C. Beaumariage and W. D. Scherer. New technology enhances water level measurement. Sea Technology, May 1987.

[30]
S. M. Beck and et al. Operational overview of NASA GTE/CITE 1 airborne instrument intercomparisons: Carbon monoxide, nitric oxide, and hydroxyl instrumentation. J. Geophys. Res., 92:1977-1985, 1987.

[31]
E. Beier. A numerical investigation of the annual variability in the Gulf of California. JPO, 27:615-632, 1997.

[32]
Igor M. Belkin and Arnold L. Gordon. Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res., pages 3675-3696, 1996.

[33]
M. Bender, T. Sowers, M. L. Dickson, J. Orchards, P. Grootes, P. A. Mayewski, and M. A. Meese. Climate connection between Greenland and Antarctica during the last 100,000 years. Nature, 372:663-666, 1994.

[34]
M. Bender, T. Sowers, and L. Labeyrie. The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core. Global Biogeochemical Cycles, 8:363-376, 1994.

[35]
W. H. Berger. The Younger Dryas cold spell: A quest for causes. Palaeogeog. Paleaoclimatol. Paleaoecol., 89:219-237, 1990.

[36]
E. N. Bernard. Assessment of Project THRUST: Past, present, future. Natural Hazards, 4:285-292, 1991.

[37]
R. A. Berner. Paleo-CO2 and climate. Nature, 358:114, 1992.

[38]
R. A. Berner. GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci., 294:56-91, 1994.

[39]
R. A. Berner, A. C. Lasaga, and R. M. Garrels. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the last 100 million years. Am. J. Sci., 283:641-683, 1983.

[40]
Sukru T. Besiktepe, Halil I. Sur, Emin Ozsoy, M. Abdul Latif, Temel Oguz, and Umit Unluata. The circulation and hydrography of the Marmara Sea. Prog. Oceanogr., 34:285-334, 1994.

[41]
F. Bignami and E. Salusti. Tidal currents and transient phenomena in the Strait of Messina. In L. J. Pratt, editor, The Physical Oceanography of Sea Straits, pages 95-124. Kluwer Academic, 1990.

[42]
Guan Bing-xian. Patterns and structures of the currents in Bohia, Huanghai and East China Seas. In Zhou Di, Liang Yuan-Bo, and Zeng Cheng-Kui, editors, Oceanology of China Seas -- Volume 1, pages 17-26. Kluwer Academic Publ., 1994.

[43]
J. Bjerknes. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev., 97:163-172, 1969.

[44]
Martin B. Blumenthal. Interpretation of equatorial current meter data as internal waves. PhD thesis, Massachusetts Inst. of Tech., 1987.

[45]
G. J. Boer, N. A. McFarlane, R. Laprise, J. D. Henderson, and J.-P. Blanchet. The Canadian Climate Centre spectral atmospheric general circulation model. Atmos.-Ocean, 22:397-429, 1984.

[46]
K. A. Boering, B. C. Daub adn S. C. Wofsy, M. Lowenstein, J. R. Podolske, and E. R. Keim. Tracer-tracer relationships and lower stratospheric dynamics: CO2 and N2O correlations during SPADE. Geophys. Res. Lett., 21:2567-2570, 1994.

[47]
G. C. Bond and R. Lotti. Iceberg discharges into the North Atlantic on millenial time scales during the last glaciation. Science, 267:1005-1008, 1995.

[48]
C. W. Boning and P. Herrmann. Annual cycle of poleward heat transport in the ocean: results from high-resolution modeling of the North and Equatorial Atlantic. JPO, 24:91-107, 1994.

[49]
BOREAS Group. Boreal ecosystem-atmosphere study experiment plan. Technical report, BOREAS Project Office, Goddard Space Flight Center, Greenbelt MD 20771, 1993.

[50]
Robert H. Bourke, Robert G. Paquette, and Robert F. Blythe. The Jan Mayen Current of the Greenland Sea. J. Geophys. Res., 97:7241-7250, 1992.

[51]
K. F. Bowden. Physical oceanography of the Irish Sea. Fish. Inv. (Lond.), 18:1-67, 1955.

[52]
John P. Boyd. Eight definitions of the slow manifold: Seiches, pseudoseiches and exponential smallness. Dyn. Atmos. Oceans, 22:49-75, 1995.

[53]
R. S. Bradley and P. D. Jones. Little Ice Age summer temperature variations: Their nature and relevance to recent global warming trends. The Holocene, 3:367-376, 1993.

[54]
J. R. Bray and J. T. Curtis. An ordination of an upland forest community of Wisconsin. Ecol. Monogr., 27:325-349, 1957.

[55]
L. M. Brekhovskikh, K. N. Federov, L. M. Fomin, M. N. Koshlyakov, and A. D. Yampolsky. Large-scale multi-buoy experiment in the tropical Atlantic. Deep-Sea Res., 18:1189-1206, 1971.

[56]
K. H. Brink and T. J. Cowles. The Coastal Transition Zone Program. J. Geophys. Res., 96:14637-14647, 1991.

[57]
M. G. Briscoe. Preliminary results from the tri-moored Internal Wave Experiment (IWEX). J. Geophys. Res., 80:3872-3884, 1975.

[58]
A. J. Broccoli and S. Manabe. The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. Cli. Dyn., 1:87-99, 1987.

[59]
A. J. Broccoli and S. Manabe. The effects of orography on midlatitude northern hemisphere dry climates. J. Climate, 5:1181-1201, 1992.
The role of mountains in maintaining extensive midlatitude arid regions in the N.H. was investigated using the GFDL GCM with and without orography. In the integration with mountains, dry climate were simulated over central Asia and the interior of North America, agreeing with the observed climate. In contrast, moist climates were simulated in the same regions in an integration without mountains. During all seasons but summer, large amplitude stationary waves occur in response to the Tibetan Plateau and Rocky Mountains. The midlatitude dry regions are located upstream of the troughs of these waves, where general subsidence and relatively infrequent storm development occur and precipitation is thus inhibited. The results of this experiment suggest that midlatitude dryness is largely due to the existence of orography, an alternative to the traditional explanation that distance from oceanic moisture sources, accented locally by the presence of mountain barriers upwind, is the major cause of midlatitude dry regions. Paleoclimatic evidence of less aridity during the late Tertiary, before substantial uplift of the Rocky Mountains and Tibetan Plateau is believed to have occurred, supports this possibility.

[60]
W. S. Broecker. The biggest chill. Natural History Mag., pages 74-82, oct 1987.

[61]
W. S. Broecker. Unpleasant surprises in the greenhouse? Nature, 328:123-126, 1987.

[62]
W. S. Broecker. The great ocean conveyor. Oceanography, 4:79-89, 1991.

[63]
W. S. Broecker. Massive iceberg discharges as triggers for global climate change. Nature, 372:421-424, 1994.

[64]
W. S. Broecker, H. G. Ostlund, and T. H. Peng. The distribution of bomb tritium in the ocean. JGR, 91:14,331-14,344, 1986.

[65]
W. S. Broecker, T.-H. Peng, J. Jouzel, and G. Russell. The magnitude of global freshwater transports of importance to ocean circulation. Climate Dyn., 4:73-79, 1990.

[66]
et al. Broecker, W. S. The chronology of the last deglaciation: Implications to the cause of the Younger Dryas event. Paleoceanography, 3:1-19, 1988.

[67]
D. S. Broomhead and G. King. Extracting qualitative dynamics from experimental data. Physica D, 20:217-236, 1986.

[68]
W. S. Brown, W. E. Johns, K. D. Leaman, J. P. McCreary, R. L. Molinari, P. L. Richardson, and C. Rooth. A Western Tropical Atlantic Experiment (WESTRAX). Oceanography, 5:73-77, 1992.

[69]
K. A. Browning. The GEWEX Cloud System Study (GCSS). BAMS, 74:387-399, 1993.

[70]
Gilbert Brunet and Robert Vautard. Empirical normal modes versus empirical orthogonal functions for statistical prediction. J. Atmos. Sci., 53:3468-3489, 1996.

[71]
Frank Bryan. High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323:301-304, 1986.

[72]
H. L. Bryden. Ocean heat transport across 24° n latitude. In G. A. McBean and M. Hantel, editors, Interactions Between Global Climate Subsystems, pages 65-75. AGU, 1993.

[73]
H. L. Bryden, D. H. Roemmich, and J. A. Church. Ocean heat transport across 24° n in the Pacific. DSR, 38:297-324, 1991.

[74]
A. F. Bunker. Computations of surface energy flux and annual air-sea interaction cycles of the North Atlantic Ocean. MWR, 104:1122-1140, 1976.

[75]
Gerd Burger. Complex principal oscillation patterns. J. Climate, 6:1972-1986, 1993.

[76]
J. A. Carton. Effect of seasonal surface freshwater flux on sea surface temperature in the tropical Atlantic ocean. JGR, 96:12,593-12,598, 1991.

[77]
D. R. Cayan. Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. JPO, 22:859-881, 1992.

[78]
R. P. Cember. On the sources, formation, and circulation of Red Sea deep water. J. Geophys. Res., 93:8175-8191, 1988.

[79]
R. D. Cess and G. L. Potter. A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res., 93:8305-814, 1988.

[80]
R. D. Cess, G. L. Potter, and et al. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95:16,601-16,615, 1990.
A comparison of climate feedback processes in GCMs finds a threefold variations in climate sensitivity, most of which is attributable to model differences in depiction of cloud feedback. Improvement in the treatment of clouds is of course urged with the reminder that cloud feedback is the consequence of all interacting physical and dynamical processes in a GCM. The result of these processes in to produce changes in temperature, moisture distribution, and clouds which are integrated into the radiation response termed cloud feedback.

[81]
R. D. Cess, G. L. Potter, and et al. Interpretation of snow-climate feedback as produced by 17 general circulation models. Science, 253:888-892, 1991.

[82]
R.D. Cess, M. H. Zhang, P. Minnis, and L. Corsetti et al. Absorption of solar radiation by clouds: Observations versus models. Science, 267:496-499, 1995.

[83]
M. T. Chahine. GEWEX: The global energy and water cycle experiment. EOS, 73(2):9-14, 1992.

[84]
A. T. C. Chang, L. S. Chiu, and T. T. Wilheit. Oceanic monthly rainfall derived from SSM/U. EOS, Trans. AGU, 74:505-513, 1993.

[85]
Robert J. Charlson, James E. Lovelock, Meinrat O. Andreae, and Stephen G. Warren. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature, 326:655-661, 1987.
The major source of cloud-condensation nuclei (CCN) over the oceans appears to be dimethylsulphide, which is produced by planktonic algae in sea water and oxidizes in the atmosphere to form a sulphate aerosol. Because the reflectance (albedo) of clouds (and thus the Earth's radiation budget) is sensitive to CCN density, biological regulation of the climate is possible through the effects of temperature and sunlight on phytoplankton population and dimethylsulphide production. To counteract the warming due to doubling of atmospheric CO2, an approximate doubling of CCN would be needed.

[86]
R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann. Climate forcing by anthropogenic aerosols. Science, 255:422-430, 1992.

[87]
Alan D. Chave, David J. Thomson, and Mark E. Ander. On the robust estimation of power spectra, coherences and transfer functions. JGR, 92:633-648, 1987.
Robust estimation of power spectra, coherences, and transfer functions is investigated in the context of geophysical data processing. The methods described are frequency-domain extensions of current techniques from the statistical literature and are applicable in cases where section-averaging methods would be used with data that are contaminated by local nonstationarity or isolated outliers. The paper begins with a review of robust estimation theory, emphasizing statistical principles and the maximum likelihood or M-estimators. These are combined with section-averaging spectral techniques to obtain robust estimates of power spectra, coherences, and transfer functions in an automatic, data-adaptive fashion. Because robust methods implicitly identify abnormal data, methods for monitoring the statistical behavior of the estimation process using quantile-quantile plots are also discussed. The results are illustrated using a variety of examples from electromagnetic geophysics.

[88]
C. T. Chen. Carbonate chemistry during WEPOLEX-81. Antarctic Journal of the United States, 17(5):102--?, 1982.

[89]
R.E. Cheney, B. C. Douglas, R. W. Agreen, L. Miller, D. Milbert, and D. Porter. The Geosat altimeter data mission: A milestone in satellite oceanography. EOS Trans., 67:1354-1355, 1986.

[90]
Gennady Chepurin and James A. Carton. The hydrography and circulation of the upper 1200 meters in the tropical North Atlantic during 1982-1991. J. Marine Res., 55:633-670, 1997.

[91]
M. D. Chou, G. Ji, K. N. Liou, and S. C. Ou. Calculations of surface radiation in arid regions--A case study. J. Appl. Meteor., 31:1084-1095, 1992.

[92]
J. R. Christy and R. T. McNider. Satellite greenhouse warming. Nature, 367:325, 1994.

[93]
J. A. Church and F. M. Boland. A permanent undercurrent adjacent to the Great Barrier Reef. J. Phys. Oceanogr., 13:1747-1749, 1983.

[94]
R. M. Clancy. Operational modelling: Ocean modelling at the Fleet Numerical Oceanography Center. Oceanography, 5:31-35, 1992.

[95]
R. A. Clarke and J.-C. Gascard. The formation of Labrador Sea Water. Part I: large-scale processes. J. Physical Oceanog., 13:1764-1778, 1983.

[96]
CLIMAP Project. The surface of the ice-age earth. Science, 191:1131-1136, 1976.

[97]
CLIMAP Project. Seasonal reconstructions of the earth's surface at the last glacial maximum. Technical Report MC-36, Geol. Soc. of America, 1981.

[98]
L. K. Coachman. Circulation, water masses, and fluxes on the southeastern Bering Sea shelf. Continental Shelf Res., 5:23-108, 1986.

[99]
L. K. Coachman and K. Aagaard. Transports through Bering Strait: annual and interannual variability. J. Geophys. Res., 93:15535-15539, 1988.

[100]
K. H. Coale, K. S. Johnson S. E. Fitzwater, R. M. Gordon, S. Tanner, F. P. Chavez, L. Ferioli, C. Sakamoto, P. Rogers, F. Millero, P. Steinberg, P. Nightingale, D. Cooper, W. Cochlan, M. Landry, J. Constantinou, G. Rollwagen, and A. Transvina. The IronEx-II mesoscale experiment produces massive phytoplankton bloom in the equatorial Pacific. Nature, 383:495-501, 1996.

[101]
J. D. Cochrane, F. J. Kelly, and C. R. Olling. Subthermocline countercurrents in the western equatorial Atlantic Ocean. J. Phys. Oceanogr., 9, 1979.

[102]
S. Cohen, J. Degnan, J. Bufton, J. Garvin, and J. Abshire. The Geoscience Laser Altimetry/Ranging System. IEEE Trans. Geosci. Remote Sens., GE-25:581-592, 1987.

[103]
COHMAP Project. Climatic changes of the last 18,000 years: Observations and model simulations. Science, 241:1043-1052, 1988.
The Cooperative Holocene Mapping Project (COHMAP) assembled a global array of well-dated paleoclimatic data and used the NCAR CCM to identify and evaluate causes and mechanisms of climate change over the period. Seven sets of simulation experiments were carried out for the 18,000 year period, focusing on monsoonal and North Atlantic climates. The GCM experiments employed boundary conditions for northern hemisphere solar radiation, land ice volume, atmospheric CO2 concentration, and sea surface temperature appropriate for the period of the simulations. [From Handel and Risbey (1992).]

[104]
Comite International des Poids et Measures. The international practical temperature scale of 1968. Metrologia, 5:35-44, 1969.

[105]
Kerry H. Cook and Isaac M. Held. Stationary waves of the ice age climate. J. Climate, 1:807-819, 1988.
A linearized, steady state, primitive equation model is used to simulation the climatological zonal asymmetries (stationary eddies) in the wind and temperature fields of the 18,000 YBP climate during winter. We compare these results with the eddies simulated in the ice age experiments of Broccoli and Manabe (1987), who used CLIMAP boundary conditions and reduced atmospheric CO2 in an atmospheric general circulation model (GCM) coupled with a static mixed layer ocean model. The agreement between the models is good, indicating that the linear model can be used to evaluate the relative influences of orography, diabatic heating, and transient eddy heat and momentum transports in generating stationary waves.

[106]
L. H. N. Cooper. The oceanography of the Celtic Sea. I. Wind drift. J. Marine Biol. Assoc. U.K., 40:223-233, 1961.

[107]
L. H. N. Cooper. The oceanography of the Celtic Sea. II. In the spring of 1950. J. Marine Biol. Assoc. U.K., 40:235-270, 1961.

[108]
Curt Covey, Lisa C. Sloan, and Martin I. Hoffert. Paleoclimate data constraints on climate sensitivity: the paleocalibration method. Climatic Change, 32:165-184, 1996.

[109]
M. D. Cox. An eddy-resolving numerical model of the ventilated thermocline. J. Phys. Oceanogr., 15:1312-1324, 1985.

[110]
S. K. Cox, D. S. McDougal, D. A. Randall, and R. A. Schiffer. (title unknown at present). Bull. Amer. Meteor. Soc., 68:114-118, 1987.

[111]
George Cresswell, Andrea Frische, Jan Peterson, and Detlef Quadfasel. Circulation in the Timor Sea. J. Geophys. Res., 98:14379-14389, 1993.

[112]
T. Cromwell, R. B. Montgomery, and E. D. Stroup. Equatorial undercurrent in Pacific Ocean revealed by new methods. Science, 119:648-649, 1954.

[113]
P. J. Crutzen, J.-U. Grooss, C. Bruhl, R. Muller, and J. M. Russell III. A reevaluation of the ozone budget with HALOE UARS data: No evidence for the ozone deficit. Science, 268:705-708, 1995.
Recently, additional ozone production mechanisms have been proposed to resolve the ozone deficit problem, which arises from greater ozone destruction than production in seceral photochemical models of the upper stratosphere and lower mesosphere. A detailed ozone model budget analysis was performed with simultaneous observations of O3, HCl, H2O, CH4, NO and NO2 from the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) under conditions with the strongest photochemical control of ozone. The results indicate that an ozone deficit may not exist. On the contrary, the use of currently recommended photochemical parameters leads to insufficient ozone destruction in the model.

[114]
D. S. Danielssen, L. Edler, S. Fonselius, L. Hernroth, M. Ostrowski, E. Svendsen, and L. Talpsepp. Oceanographic variability in the Skagerrak and Northern Kattegat, May-June, 1990. ICES J. of Marine Science, 54:753-773, 1997.

[115]
W. Dansgaard, S. J. Johnsen, and et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364:218-220, 1993.

[116]
G. H. Darwin. On the precession of a various spheroid, and on the remote history of the Earth. Phil. Trans. R. Soc. London, 170:447-538, 1879.

[117]
G. H. Darwin. On the secular changes changes in the elements of the orbit of a satellite revolving about a tidally distorted planet. Phil. Trans. R. Soc. London, 171:713-891, 1880.

[118]
G. H. Darwin. On the analytical expressions which give the history of a fluid planet of small viscosity, attended by a single satellite. Proc. R. Soc. London, 30:255-278, 1880.

[119]
Ilson C. A. da Silveira, Luiz B. Miranda, and Wendell S. Brown. On the origins of the North Brazil Current. J. Geophys. Res., 99:22501-22512, 1994.

[120]
R. Davis. Drifter observations of coastal surface currents during CODE: The method and descriptive view. J. Geophys. Res., 90:4741-4755, 1985.

[121]
R. E. Davis, D. C. Webb, L. A. Regier, and J. Dufour. The autonomous lagrangian circulation explorer (alace). J. Ocean and Atmosph. Tech., 9:264-285, 1992.

[122]
G. E. R. Deacon. The Weddell Gyre. Deep-Sea Res., 26A:981-995, 1979.

[123]
J. W. Deardorff. Cloud top entrainment instability. J. Atmos. Sci., 37:131-147, 1980.

[124]
G. DeBlonde and W. R. Peltier. Simulations of continental ice sheet growth over the last glacial-interglacial cycle: experiments with a one-level seasonal energy balance model including realistic geography. JGR, 96:9189-9125, 1991.

[125]
G. DeBlonde, W. R. Peltier, and W. T. Hyde. Simulations of continental ice sheet growth over the last glacial-interglacial cycle: experiments with a one level seasonal energy balance model including seasonal ice albedo feedback. Global and Planetary Change, 98:37-55, 1992.

[126]
A. Deepak and G. Vali. The International Global Aerosol Program (IGAP) Plan: An Overview. Technical report, ICCP/IRC/ICACGP, 1991.

[127]
T. Delcroix and C. Henin. Observations of the Equatorial Intermediate Current in the Western Pacific Ocean. J. Phys. Oceanogr., 18:363-366, 1988.

[128]
A. D. Del Genio, A. A. Lacis, and R. A. Ruedy. Simulations of the effect of a warmer climate on atmospheric humidity. Nature, pages 382-385, 1991.

[129]
T. Delworth, S. Manabe, and R. J. Stouffer. Interdecadal variablity of the thermohaline circulation in a coupled ocean-atmosphere model. J. Clim., 6:1993-2011, 1993.

[130]
H. De Vries. Variation in concentration of radiocarbon with time and location on Earth. Proc. Konink. Ned. Akad. Wetenschap., B61:94-102, 1958.

[131]
R. E. Dickinson. Modeling evapotranspiration for three-dimensional global climate models. In J. E. Hanson and T. Takahashi, editors, Climate Processes and Climate Sensitivity, number 29 in Geophysical Monographs, pages 58-72. Amer. Geophys. Union, 1984.

[132]
R. E. Dickinson, A. Henderson-Sellers, , P. J. Kennedy, and M. F. Wilson. Biosphere Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. Technical Report NCAR TN275, NCAR, 1986.

[133]
R. E. Dickinson, A. Henderson-Sellers, , P. J. Kennedy, and M. F. Wilson. Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. Technical Report NCAR TN387, NCAR, 1993.

[134]
R. R. Dickson, J. Meincke, S.-A. Malmberg, and A. J. Lee. The Great Salinity Anomaly in the northern North Atlantic. Progress in Oceanography, 20:103-151, 1988.

[135]
David E. Dietrich. On modelling geophysical flows having low Rossby numbers. Atmos.--Ocean, 31:57-71, 1993.

[136]
David E. Dietrich. Application of a modified Arakawa `a' grid ocean model having reduced numerical dispersion to the Gulf of Mexico circulation. Dyn. Atmos. Oceans, 27:201-217, 1997.

[137]
D. J. et al. Diner. A multi-angle imaging SpectroRadiometer for terrestrial remote sensing from the Earth Observing System. Int. J. Imaging Systems and Techn., 3:92-107, 1991.

[138]
Donde Va. Donde Va? An oceanographic experiment in the Alboran Sea: The oceanographic report. EOS, Trans. Amer. Geophys. Union, 65:682-683, 1984.

[139]
J. Donguy and C. Henin. Evidence of the South Tropical Countercurrent in the Coral Sea. Australian Journal of Marine and Freshwater Research, 26:405-409, 1975.

[140]
J. L. Dorman and P. J. Sellers. A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteor., 28:833-855, 1989.

[141]
Bruce C. Douglas and Robert E. Cheney. GEOSAT: Beginning a new era in satellite oceanography. J. Geophys. Res., 95:2833-2836, 1990.

[142]
H.J. Dowsett, T.M. Cronin, R.Z. Poore, R.S. Thompson, R.C. Whatley, and A.M. Wood. Micropaleontological evidence for increased meriodional heat transport in the North Atlantic Ocean during the Pliocene. Science, 258:1133-1134, 1991.

[143]
Harry Dowsett, Robert Thompson, John Barron, Thomas Cronin, Farley Fleming, Scott Ishman, Richard Poore, Debra Willard, and Jr. Thomas Holtz. Joint investigations of the Middle Pliocene climate I: PRISM paleoenvironmental reconstructions. Global and Planetary Change, 9:169-195, 1994.

[144]
N. I. Ducoudre, K. Laval, and A. Perrier. SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model. J. Climate, 6:248-273, 1993.

[145]
John K. Dukowicz and Richard D. Smith. Implicit free-surface method for the Bryan-Cox-Semtner ocean model. J. Geophys. Res., 99:7991-8014, 1994.

[146]
D. R. Durran. Improving the anelastic approximation. J. Atmos. Sci., 46:1453-1461, 1989.

[147]
J. A. Dutton. The challenges of global change. In J. R. Fleming and H. A. Gemery, editors, Science, Technology, and the Environment, pages 53-111. Univ. of Akron Press, 1995.

[148]
J. A. Eddy. The Maunder Minimum. Science, 192:1189-1202, 1976.

[149]
V. W. Ekman. On dead water, Norwegian North Polar Expedition 1893-1896. Scientific Results, 5(15):1-152, 1904.

[150]
H. Elderfield and E. Thomas. Glacial-interglacial paleoenvironments of the eastern Atlantic Ocean: The Biogeochemical Ocean Flux Study (BOFS) paleoceanography program. Paleoceanography, 10:509-511, 1995.

[151]
R. G. Ellingson, J. Ellis, and S. B. Fels. The intercomparison of radiation codes used in climate models: Longwave results. JGR, 96:8929-8953, 1991.

[152]
Robert G. Ellingson and Yves Fouquart. The intercomparison of radiation codes in climate models: an overview. JGR, 96:8925-8927, 1991.
The recognition of the central role of radiative processes in many proposed climate change mechanisms and the perception of possibly significant uncertainties in the estimates of these fundamental processes led the Joint Scientific Committee of the World Climate Research Programme and the International Radiation Commission of the International Association of Meteorology and Atmospheric Physics to initiate the international Intercomparison of Radiation Codes in Climate Models (ICRCCM). The results from model calculations with specified clear-and-cloudy conditions show that many radiation algorithms may have unidentifiable but large errors that may significantly affect the conclusions of the studies for which they are used. This is true for climate modeling but may also be the case for other applications such as the estimation of radiation fluxes at the sruface from satellite observations. As the study has progressed over a 4-year period, there has been a narrowing of results as errors were found in some codes and as the understanding of many modeling problems increased. Many of the results, particulary for clear-sky conditions, indicate that we are close to the range of (relative) accuracy for calculating flux quantities necessary for many climate programs. However, not all models will give such accuracy. It is recommended that the ICRCCM test cases be used to test radiation algorithms prior to their application to climate-related problems. THe participants feel that the rather large discrepancies revealed during ICRCCM cannot be decisively resolved by further calculation. Therefore the group recommends the organization of a program to simultaneously measure spectral radiance at high spectral resolution along with the atmospheric data necessary to calculate radiances.

[153]
R. G. Ellingson and W. J. Wiscombe. The Spectral Radiance Experiment (SPECTRE): Project description and sample results. Bull. Amer. Meteor. Soc., 77:1967-1985, 1996.

[154]
W. R. Emanuel, H. H. Shugart, and M. P. Stevenson. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Clim. Change, 7:29-43, 1985.

[155]
A.S. Endal. Evolutionary variations of solar luminosity. Technical Report Conf. Publ. 2191, NASA, 1981.

[156]
T. E. Ewart and S. A. Reynolds. The mid-ocean acoustics transmission experiment (MATE). J. Acoust. Soc. Am., 75:785-802, 1984.

[157]
Rana A. Fine, Roger Lukas, Frederick M. Bingham, Mark J. Warner, and Richard H. Gammon. The western equatorial Pacific: A water mass crossroads. J. Geophys. Res., 98:14379-14389, 1994.

[158]
C. G. Flewellen, N. W. Millard, and I. P. Rouse. TOBI, a vehicle for deep ocean survey. Electronic and Communication Eng. J., 5:85-93, 1993.

[159]
Hermann Flohn. On time scales and causes of abrupt paleoclimatic events. Quat. Res., 12:135-149, 1979.
Discusses many examples from the paleoclimatic literature of very rapid climate change and possible mechanisms.

[160]
A. Foldvik, K. Aagaard, and T. Torresen. On the velocity field of the East Greenland Current. Deep-Sea Research, 35:1335-1354, 1988.

[161]
P. Foukal. Stellar luminosity variations and global warming. Science, 247:556-558, 1994.

[162]
Y. B. Fourquart, B. Bonnel, and V. Ramaswamy. Intercomparing shortwave radiation codes for climate studies. JGR, 96:8955-8968, 1991.

[163]
FRAM Group. Initial results from a fine resolution model of the southern ocean. Eos Trans., AGU, 72:174-175, 1991.

[164]
R. J. Francey, P. P. Tans, C. E. Allison, I. G. Enting, J. W. C. White, and M. Trolier. Changes in oceanic and terrestrial carbon uptake since 1982. Nature, 373:326-330, 1995.

[165]
Lee-Lueng Fu, Edward J. Christensen, Charles A. Yamarone Jr., Michel Lefebvre, Yves Menard, Michel Dorrer, and Philippe Escudier. TOPEX/POSEIDON mission overview. J. Geophys. Res., 99:24369-24381, 1994.

[166]
F. C. Fuglister. Multiple currents in the Gulf Stream system. Tellus, 3:230-233, 1951.

[167]
F. C. Fuglister and L. V. Worthington. Some results of a multiple ship survey of the Gulf Stream. Tellus, 1-14:1-14, 1951.

[168]
Jean-Francois Gaillard. ANTARES-I: a biogeochemical study of the Indian sector of the Southern Ocean. Deep-Sea Res. II, 44:951-961, 1997.

[169]
J. C. Gascard and C. Richez. Water masses and circulation in the western Alboran Sea, and in the Straits of Gibraltar. Progress in Oceanography, 15:157-216, 1985.

[170]
W. L. Gates. The numerical simulation of the ice age climate with a global general circulation model. J. Atmos. Sci., 33:1844-1873, 1976.

[171]
W. L. Gates. The Atmospheric Model Intercomparison Project. BAMS, 73:1962-1970, 1992.

[172]
P. R. Gent, J. Willebrand, T. J. McDougall, and J. C. McWilliams. Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25:463-474, 1995.

[173]
GEWEX Cloud System Science Team. The GEWEX Cloud System Study (GCSS). Bull. Am. Meteorol. Soc., 74:387-399, 1993.

[174]
P. W. Glynn. Coral reef bleaching: Ecological perspectives. Coral Reefs, 12:1-17, 1993.

[175]
J. S. Godfrey. The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res., 101:12,217-12,237, 1996.

[176]
J. S. Godfrey and A. J. Weaver. Is the Leeuwin Current driven by Pacific heating and winds? Progress in Oceanogr., 27:225-272, 1991.

[177]
A. L. Gordon. Antarctic Polar Frontal Zone. In J. L. Reid, editor, Antarctic Oceanology I, number 15 in Antarct. Res. Ser., pages 205-221. AGU, 1971.

[178]
A. L. Gordon. Weddell Deep Water variability. Deep-Sea Res., 40 (supp.):199-217, 1982.

[179]
A. L. Gordon. Interocean exchange of thermocline water. JGR, 91:5037-5046, 1986.

[180]
Arnold L. Gordon. The South Atlantic: An overview of results from 1983-88 research. Oceanography, 1:12-17, 1988.

[181]
Arnold L. Gordon, Amy Ffield, and A. Gani Ilahude. Thermocline of the Flores and Banda Seas. J. Geophys. Res., 99:18235-18242, 1994.

[182]
A. L. Gordon. Antarctic oceanographic zonation. In M. J. Dunbar, editor, Polar Oceans, pages 45-76. Arct. Inst. of North Am., 1977.

[183]
T. J. Goreau and R. L. Hayes. Coral bleaching and ocean ``hot spots''. Ambio, 73:176-180, 1994.

[184]
Y. Gouriou and J. M. Toole. Mean circulation of the upper layers of the western equatorial Pacific Ocean. J. Geophys. Res., 98:22495-22520, 1993.

[185]
Michael Graham. Henry bryant bigelow. Deep-Sea Res., 15:125-132, 1968.

[186]
N. E. Graham. Simulation of recent global temperature trends. Science, 267:666-671, 1995.

[187]
GRIP Ice Core Project Members. Climate instability during the last interglacial period recorded in the GRIP ice core. Nature, 364:203-207, 1993.

[188]
T. P. Guilderson, R. G. Fairbanks, and J. L. Rubenstone. Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change. Science, 263:663-665, 1994.

[189]
James Hansen, Helene Wilson, Makiko Sato, Reto Ruedy, Kathy Shah, and Erik Hansen. Satellite and surface temperature data at odds? Climatic Change, 30:103-117, 1995.

[190]
W. B. Harland. Geochronologic scales. In G. V. Cohee, M. F. Glaessner, and H. D. Hedberg, editors, Contributions to the Geologic Time Scale. AAPG, 1978.

[191]
R. P. Harris. Coccolithophorid dynamics: the European Emiliania huxleyi programme, EHUX. Journal of Marine Systems, 9:1-11, 1996.

[192]
K. Hasselmann. PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. JGR, 93:11,015-11,021, 1988.
A general method is described for constructing simple dynamical models to approximate complex dynamical systems with many degrees of freedom. The technique can be applied to intepret sets of observed time series or numerical simulations with high-resolution models, or to relate observation and simulations. The method is based on a project of the complete system on to a smaller number of ``principal interaction patterns (PIPs). The coefficients of the PIP expansion are assumed to be governed by a dynamic model containing a small number of adjustable parameters. The optimization of the dynamical model, which in the general case can be both nonlinear and time-dependent, is carried out simultaneously with the construction of the optimal set of interaction patterns. In the linear case the PIPs reduce to the eigenoscillations of a first-order linear vector process with stochastic forcing (principal oscillation patterns, or POPs). POPs are linearly related to the ``principal prediction patterns'' used in linear forecasting applications. The POP analysis can also be applied as a diagnostic tool to compress the extensive information contained in the high-dimensional cross-spectral covariance matrix representing the complete second-moment structure of the system.

[193]
K. Hasselmann. Optimal fingerprints for the detection of time-dependent climate change. J. Climate, 6:1957-1971, 1993.
An optimal linear filter (fingerprint) is derived for the detection of a given, time-dependent, multivariate climate change signal in the presence of natural climate variability noise. Application of the fingerprint to the observed (or model simulated) climate data yields a climate change detection variable (detector) with maximal signal-to-noise ratio. The optimal fingerprint is given by the product of the assumed signal pattern and the inverse of the climate variability covariance matrix. The data can consist of any, not necessarily dynamically complete, climate dataset for which estimates of the natural variability covariance matrix exist. The single-pattern analyis readily generalizes to the multipattern case of a climate change signal lying in a prescribed (in practice relatively low dimensional) signal pattern space: the single-pattern result is simply applied separately to each individual base pattern spanning the the signal pattern space. Multipattern detection methods can be applied either to test the statistical significance of individual components of a predicted multicomponent climate change response, using a multivariate test. Both detection modes make use of the same set of detectors. The difference in direction of the assumed signal pattern and computed optimal fingerprint vector allows alternative interpretations of the estimated signal associated with the set of optimal detectors. The present analysis yields an estimated signal lying in the assumed signal space, whereas an earlier analysis of the time-independent detection problem by Hasselmann yielded an estimated signal in the computed fingerprint space. The different interpretations can be explained by different choices of the metric used to related the signal space to the fingerprint space (inverse covariance matrix versus standard Euclidean metric, respectively). Two simple natural variability models are considered: a space-time separability model, and an expansion in terms of POPs (principal oscillation patterns). For each model the application of the optimal fingerprint method is illustrated by an example.

[194]
K. Hasselmann and O. H. Shemdin. Remote sensing experiment MARSEN. Int. J. Remote Sensing, 3:139-361, 1982.

[195]
M. W. Haurwitz and G. W. Brier. A critique of the superposed epoch analysis method: its application to solar-weather relations. Mon. Weather Rev., 109:2074-2079, 1981.

[196]
Susan L. Hautala, Joseph L. Reid, and Nan Bray. The distribution and mixing of Pacific water masses in the Indonesian Seas. JGR, 101:12,375-12,389, 1996.

[197]
S. P. Hayes, D. W. Behringer, M. Blackmon, D. V. Hansen, N.-C. Lau, A. Leetma, S.G.H. Philander, E. J. Pitcher, C. S. Ramage, E. M. Rasmusson, E. S. Sarachik, and B. A. Taft. The Equatorial Pacific Ocean Climate Studies (EPOCS) Plans: 1986-1988. EOS, Trans. Am. Geophys. Union, 67:442-444, 1986.

[198]
S. P. Hayes, L. J. Mangum, J. Picaut, A. Sumi, and K. Takeuchi. TOGA TAO: A moored array for real-time measurements in the tropical Pacific Ocean. Bull. Am. Meteorol. Soc., 72:339-347, 1990.

[199]
G. S. Hayne, D. W. Hancock III, C. L. Purdy, and P. S. Callahan. The corrections for significant wave height and altitude effects in the TOPEX radar altimeter. JGR, 99:?, 1994.

[200]
J. D. Hays, J. Imbrie, and N. J. Shackleton. Variations in the Earth's orbit: Pacemaker of the ice ages. Science, 194:1121-1132, 1976.

[201]
Hartmut Heinrich. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat. Res., 29:142-152, 1988.

[202]
I. Held. Pseudomomentum and the orthogonality of modes in shear flows. J. Atmos. Sci., 42:2280-2288, 1985.

[203]
Isaac M. Held and Max J. Suarez. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. BAMS, 75:1825-1830, 1994.
A benchmark calculation is proposed for evaluating the dynamical cores of atmospheric general circulation models independently of the physical parameterizations. The test focuses on the long-term statistical properties of a fully developed general circulation; thus, it is particularly appropriate for intercomparing the dynamics used in climate models. To illustrate the use of the benchmark, two very different atmospheric dynamical cores-one spectral, one finite difference-are compared. It is found that the long-term statistics produced by the two models are very similar. Selected results from these calculations are presented to initiate the comparison.

[204]
S. Hellerman and M. Rosenstein. Normal monthly wind stress over the world ocean with error estimates. JPO, 13:1093-1104, 1983.

[205]
A. Henderson-Sellers and R. E. Dickinson. Intercomparison of land surface parameterisations launched. EOS, 73:195-196, 1992.

[206]
A. Henderson-Sellers, A. J. Pitman, P. K. Love, P. Irannejad, and T. H. Chen. The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. BAMS, 76:489-503, 1995.

[207]
A. Henderson-Sellers, Z.-L. Yang, and R. E. Dickinson. The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS). BAMS, 74:1335-1349, 1993.

[208]
C. Henin and P. Hisard. The North Equatorial Countercurrent observed during the Programme Francais Ocean Climat Dans l'Atlantique Equatorial Experiment in the Atlantic Ocean, July 1982 to August 1984. J. Geophys. Res., 92:3751-3758, 1987.

[209]
P. Hess and H. Brezowsky. Katalog der Grosswetterlagen Europas (1881-1976). Berichte des Deutschen Wetterdienst, 15:?, 1977.

[210]
V. Hesshaimer, M. Heimann, and I. Levin. Radiocarbon evidence suggesting a smaller oceanic CO2 sink than hitherto assumed. Nature, 370:201-203, 1994.

[211]
Robert L. Higdon and Andrew F. Bennett. Stability analysis of operator splitting for large-scale ocean modeling. J. Comp. Phys., 123:311-329, 1996.

[212]
Peter H. Hildebrand, Wen-Chau Lee, Craig A. Walther, Charles Frush, Mitchell Randall, Eric Loew, Richard Nietzel, Richard Parsons, Jacques Testud, Francois Baudin, and Alain LeCornec. The ELDORA/ASTRAIA airborne doppler weather radar: High-resolution observations from TOGA/COARE. BAMS, 77:213-232, 1996.

[213]
Chung-Ru Ho, Xiao-Hai Yan, and Quanan Zheng. Satellite observations of upper-layer variabilities in the western Pacific warm pool. Bull. Amer. Meteor. Soc., 76:669-679, 1995.

[214]
J. M. Hoell and et al. Operational overview of NASA GTE/CITE 2 airborne instrument intercomparisons: Nitrogen dioxide, nitric acid, and peroxyacetyl nitrate. J. Geophys. Res., 95:10,047-10,054, 1990.

[215]
J. M. Hoell and et al. Operational overview of the NASA GTE/CITE 3 airborne insrument intercomparisons for sulfur dioxide, hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, and carbon disulfide. J. Geophys. Res., 98:23,291-23,304, 1993.

[216]
L. R. Holdridge. Determination of world plant formations from simple climatic data. Science, 105:367-368, 1947.

[217]
G. J. Holland, J. L. McBride, R. K. Smith, D. Jasper, and T. D. Keenan. The BMRC Australian Monsoon Experiment: AMEX. Bull. Amer. Meteor. Soc., 67:1466-1472, 1986.

[218]
J. D. Horel and J. M. Wallace. Planetary scale atmospheric phenomena associated with the Southern Oscillation. Mon. Weather Rev., 109:812-829, 1981.

[219]
S. Hough. On the application of harmonic analysis to the dynamical theory of the tides. II, On the general integration of Laplace's dynamical equations. Philos. Trans. R. Soc. London, Ser. A, 191:139-185, 1898.

[220]
R. X. Huang and R. W. Schmitt. The Goldsborough-Stommel circulation of the world oceans. J. Phys. Oceanogr., 23:1277-1284, 1993.

[221]
G. J. Huffman, R. F. Adler, B. Rudolf, U. Schneider, and P. R. Keehn. Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Clim., 8:1284-1295, 1995.

[222]
D. T. J. Hurle and E. Jakeman. Soret-driven thermosolutal convection. J. Fluid Mech., 47:667-687, 1971.

[223]
A. Gani Ilahude and Arnold L. Gordon. Thermocline stratification within the Indonesian Seas. J. Geophys. Res., 101:12401-12409, 1996.

[224]
J. Imbrie and N. G. Kipp. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. In K. K. Turekian, editor, The Late Cenozoic Glacial Ages, pages 71-131. Yale Univ. Press, 1971.

[225]
J. Imbrie, A. McIntyre, and A. C. Mix. Oceanic response to orbital forcing in the Late Quaternary: Observational and experimental strategies. In A. Berger, S. H. Schneider, and J.-C. Duplessy, editors, Climate and Geosciences, pages 121-164. D. Reidel, 1989.

[226]
Mohamed Iskandarani, Dale B. Haidvogel, and John P. Boyd. A staggered spectral element model with application to the oceanic shallow water equations. Int. J. Num. Meth. Fluids, 20:393-414, 1995.

[227]
F. C. Jackson. The radar ocean wave spectrometer, measuring ocean waves from space. Johns Hopkins APL Techn. Dig., 8:116-127, 1987.

[228]
S. S. Jacobs, A. F. Amos, and P. M. Bruckhausen. Ross Sea oceanography and Antarctic Bottom Water formation. Deep-Sea Res., 17:935-962, 1970.

[229]
J. P. Jacobsen. Eine graphische Methode zur Bestimmungd des Vermischungskoeffizienten im Meer. Gerl. Beitr. z. Geophysik, 16:404--?, 1927.

[230]
D. S. Jenkinson. The turnover of organic carbon and nitrogen in soil. Phil. Trans. R. Soc. London B, 329:361-369, 1990.

[231]
Johnny A. Johannessen. The Norwegian Continental Shelf Experiment Prelaunch ERS 1 investigation. J. Geophys. Res., 96:10409-10410, 1991.

[232]
W. E. Johns, T. N. Lee, R. C. Beardsley, J. Candela, R. Limeburner, and B. Castro. Annual cycle and variability of the North Brazil Current. J. Phys. Oceanog., 28:103-128, 1998.

[233]
Gregory C. Johnson and Dennis W. Moore. The Pacific subsurface countercurrents and an inertial model. J. Phys. Oceanog., 27:2448-2459, 1997.

[234]
A. Jones, D. L. Roberts, and A. Slingo. A climate model study of the indirect radiative forcing by anthropogenic sulphate aerosols. Science, 370:450-453, 1994.

[235]
J. Jouzel, C. Lorius, J. R. Petit, C. Genthon, N. I. Barkov, V. M. Kotlyakov, and V. M. Petrov. Vostok ice core: Continuous isotope temperature record over the last climatic cycle (160,000 years). Nature, 329:403-408, 1987.
A proxy temperature record from the Vostok ice core is created using oxygen isotope and deuterium ratios. This is compared to ocean sediment core data. A detailed discussion of the differences between the proxy records is included.

[236]
T. R. Karl. The sensitivity of the Palmer drought severity index index and Palmer's Z-index to their calibration coefficients including potential evapotranspiration. J. Climate Appl. Meteor., 25:77-86, 1986.

[237]
Thomas R. Karl, Richard W. Knight, David R. Easterling, and Robert G. Quayle. Trends in U.S. climate during the twentieth century. Consequences, 1:3-12, 1995.

[238]
Thomas R. Karl, Richard W. Knight, David R. Easterling, and Robert G. Quayle. Indices of climate change for the United States. BAMS, 77:279-292, 1996.

[239]
K. B. Katsaros, S. D. Smith, and W. A. Oost. HEXOS - Humidity Exchange Over the Sea. A program for research on water-vapor and droplet fluxes from sea to air at moderate to high wind speeds. Bull. Amer. Meteor. Soc., 68:466-476, 1987.

[240]
E. Katz. Seasonal response of the sea surface to the wind in the equatorial Atlantic. J. Geophys. Res, 92:1885-1893, 1987.

[241]
L. D. Keigwin, W. B. Curry, S. J. Lehman, and S. Johnsen. The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago. Nature, 371:323-326, 1994.

[242]
J. T. Kiehl and B. P. Briegleb. The relative role of sulfate aerosols and greenhouse gases in climate forcing. Science, 260:311-314, 1993.

[243]
T. H. Kinder and H. L. Bryden. The 1985-1986 Gibraltar Experiment: Data collection and preliminary results. Eos Trans. AGU, 68:786-787,793-795, 1987.

[244]
M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre. Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30:2-27, 1992.

[245]
N. G. Kipp. New transfer function for estimating past sea-surface conditions from sea-bed distribution of planktonic foraminiferal assemblages in the North Atlantic. In R. M. Cline and J. D. Hays, editors, Investigation of Lae Quaternary Paleoceanography and Paleoclimatology, number 145 in Geol. Soc. Am. Mem., pages 3-42. GSA, 1976.

[246]
F. N. Kogan. Remote sensing of weather impacts on vegetation in nonhomogeneous areas. Int. J. Remote Sens., 11:1405-1419, 1990.

[247]
W. Krauss. The North Atlantic Current. J. Geophys. Res., 91:5061-5074, 1986.

[248]
A. J. Krueger. Sighting of El Chichon sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer. Science, 220:1377-1379, 1983.

[249]
Fred Kucharski. On the concept of exergy and available potential energy. Q. J. R. Meteorol. Soc., 123:2141-2156, 1997.

[250]
Eric Kunze, Raymond W. Schmitt, and John M. Toole. The energy balance in a warm-core ring's near-inertial critical layer. JPO, 25:942-957, 1995.

[251]
J. E. Kutzbach and P. J. Guetter. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. J. Atmos. Sci., 43:1726-1759, 1986.

[252]
J. P. Lacaux, J. M. Brustet, R. Delmas, J. C. Menaut, L. Abbadie, B. Bonsang, H. Cachier, J. Baudet, M. O. Andreae, and G. Helas. Biomass burning in the tropical savannas of Ivory Coast: An overview of the field experiment Fire of Savannas (FOS/DECAFE). J. Atmos. Chem., 22:195-216, 1996.

[253]
H. H. Lamb. British Isles weather types and a register of daily sequence of circulation patterns, 1861-1971. Geophys. Mem, 116:85, 1972.

[254]
I. Langmuir. Surface motion of water induced by wind. Science, 87:119--?, 1938.

[255]
Paul E. La Violette. The Western Mediterranean Circulation Experiment (WMCE): Introduction. J. Geophys. Res., 95:1511-1514, 1990.

[256]
Paul E. La Violette, Joaquin Tintore, and Jordi Font. The surface circulation of the Balearic Sea. J. Geophys. Res., 95:1559-1568, 1990.

[257]
K. D. Leaman, P. S. Vertes, and C. Rocken. POLARIS: A GPS-navigated ocean acoustic current profiler. J. Atmos. Ocean Tech., 12:541-549, 1995.

[258]
D. R. Legates and C. J. Wilmott. Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10:111-127, 1990.

[259]
Le Group Tourbillon. Studies of mesocale eddies in the North East Atlantic. Deep-Sea Res., 30:475-511, 1983.

[260]
A. Lee and D. Ellett. On the water masses of the Northwest Atlantic Ocean. Deep-Sea Res., 14:183-190, 1967.

[261]
C. E. Leith. Nonlinear normal model initialization and quasigeostrophic theory. J. Atmos. Sci., 37:958-968, 1980.

[262]
D. H. Lenschow, J. C. Wyngaard, and W. T. Pennell. Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci., 37:1313--?, 1980.

[263]
C. Le Provost, A. F. Bennett, and D. E. Cartwright. Ocean tides for and from TOPEX/POSEIDON. Science, 267:639-642, 1995.

[264]
Murray D. Levine, James D. Irish, Terry E. Ewart, and Stephen A. Reynolds. Simultaneous spatial and temporal measurements of the internal wave field during MATE. J. Geophys. Res., 91:9709-9719, 1986.

[265]
Edward L. Lewis. The Practical Salinity Scale 1978 and its antecedents. IEEE J. Oceanic Engin., OE-5:3-8, 1980.

[266]
J. M. Lewis. The story behind the Bowen ratio. Bull. Am. Meteor. Soc., 76:2433-2443, 1995.

[267]
Edward L. Lewis and R. G. Perkin. Salinity: Its definition and calculation. J. Geophys. Res., 83:466-478, 1978.

[268]
J. M. Lewis, C. M. Hayden, R. T. Merrill, and J. M. Schneider. Gufmex: A study of return flow in the Gulf of Mexico. Bull. Amer. Meteor. Soc., 70:24-29, 1989.

[269]
Heung-Jae Lie and Cheol-Ho Cho. On the origin of the Tsushima Warm Current. J. Geophys. Res., 99:25081-25091, 1994.

[270]
M. Lindemann and J. Oerlemans. Northern Hemisphere ice sheets and planetary waves: A strong feedback mechanism. J. Climate, 7:109-117, 1987.

[271]
J. A. Lindesay, M. O. Andreae, J. G. Goldammer, G. Harris, H. J. Annegarn, M. Garstand, R. J. Scholes, and B. W. van Wilgen. International Geosphere-Biosphere Programme/International Global Atmospheric Chemistry SAFARI-92 field experiment: Background and overview. J. Geophys. Res., 101:23,521-23,530, 1996.

[272]
E. Lindstrom, R. Lukas, R. Fine, E. Firing, S. Godfrey, G. Meyers, and M. Tsuchiya. The Western Pacific Ocean Circulation Study. Nature, 330:533-537, 1987.

[273]
W. T. Liu. Estimation of latent heat flux with Seasat-SMMR, a case study in N. Atlantic. In C. Gautier and M. Fieux, editors, Large-Scale Oceanographic Experiments and Satellites, pages 205--? Reidel, 1984.

[274]
M. S. Longuet-Higgins and R. W. Stewart. Radiation stresses in water waves: a physical discussion with applications. Deep Sea Res., 11:529-562, 1964.

[275]
H. H. Loosli. A dating method with Ar-39. Earth and Planet. Sci. Lett., 63:51-62, 1983.

[276]
E. N. Lorenz. Available potential energy and the maintenance of the general circulation. Tellus, pages 157-167, 1955.

[277]
E. N. Lorenz. Climate predictability. In ?, editor, The Physical Bases of Climate and Climate Modelling, number 16 in GARP Publ. Ser., pages 132-136. World Meteorol. Org., 1975.

[278]
E. N. Lorenz. Forced and free variations of weather and climate. J. Atmos. Sci., 36:1367-1376, 1979.

[279]
Peng Lu, Julian P. McCreary Jr., and Barry A. Klinger. Meridional circulation cells and the source waters of the Pacific Equatorial Undercurrent. J. Phys. Oceanog., 28:62-84, 1998.

[280]
R. Lukas, E. Firing, P. Hacker, P. L. Richardson, C. A. Collins, R. Fine, and R. Gammon. Observations of the Mindanao Current during the Western Equatorial Pacific Ocean Circulation Study (WEPOCS). JGR, 96:7098-7104, 1991.

[281]
J. R. E. Lutjeharms and R. C. van Ballegooyen. The retroflection of the Agulhas Current. J. Phys. Oceanogr., 18:1570-1583, 1988.

[282]
J. R. Luyten, J. Pedlosky, and H. Stommel. The ventilated thermocline. J. Phys. Oceanogr., 13:292-309, 1983.

[283]
D. R. MacAyeal. Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events. Paleoceanog., 8:775-784, 1993.

[284]
P. Malanotte-Rizzoli and A. R. Robinson. POEM: Physical Oceanography of the Eastern Mediterranean. Eos Trans. AGU, 69:194-198, 1988.

[285]
Paola Malanotte-Rizzoli, Benjamino B. Manca, Maurizio R. D'Alcala, A. Theocharis, A. Bergamasco, D. Bregant, G. Budillon, G. Civitarese, D. Georgopoulos, A. Michelato, E. Sansone, P. Scarazzato, and E. Souvermezoglou. A synthesis of the Ionian Sea hydrography, circulation and water mass pathways during POEM-Phase I. Prog. Oceanog., 39:153-204, 1997.

[286]
T. C. Mammen and N. von Bosse. STEP -- A temperature profiler for measuring the oceanic thermal boundary layer at the ocean-air interface. J. Atmos. Oceanic Technol., 7:312-322, 1990.

[287]
S. Manabe and A. J. Broccoli. The influence of continental ice sheets on the climate of an ice age. J. Geophys. Res., 90:2167-2190, 1985.

[288]
S. Manabe and A. J. Broccoli. A comparison of climate model sensitivity with data from the last glacial maximum. J. Atmos. Sci., 42:2643-2651, 1985.

[289]
S. Manabe and R. J. Stouffer. Two stable equilibria of a coupled ocean-atmosphere model. J. Climate, 1:841-866, 1988.

[290]
G. Manley. Central England temperatures: monthly means 1659 to 1973. QJRMS, 100:389-405, 1974.

[291]
P. J. Markwick. ``equability'', continentality, and Tertiary ``climate'': The crocodilian perspective. Geology, 22:613-616, 1994.

[292]
John Marra. Marine bioluminescence and upper ocean physics: Seasonal changes in the Northeast Atlantic. Oceanography, 2:36-38, 1989.

[293]
J. Marra and E. O. Hartwig. Biowatt: A study of bioluminescence and optical variability in the sea. EOS, 65:732-733, 1984.

[294]
J. H. Martin, G. A. Knauer, D. M. Karl, and W. W. Broenkow. VERTEX: Carbon cycling in the northeast Pacific. Deep-Sea Res., 34:267-285, 1987.

[295]
D. G. Martinson, N. G Pisias, J. D. Hayes, J. Imbrie, T. C. Moore, and N. J. Shackleton. Age, dating and orbital theory of the Ice Ages: Development of a high resolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27:1-29, 1987.

[296]
J. Masuzawa. Subtropical Mode Water. Deep-Sea Res., 16:453-472, 1969.

[297]
E. Matthews. Global vegetation and land use: New high-resolution data bases for climate studies. J. Climate and Appl. Met., 22:474-487, 1983.

[298]
M. S. McCartney. Subantaractic Mode Water. In M. Angel, editor, A Voyage of Discovery, pages 103-109. Pergamon Press, 1977.

[299]
M. S. McCartney. Recirculating components to the deep western boundary current of the northern North Atlantic. Prog. Oceanog., 29:283-383, 1992.

[300]
M. S. McCartney and L. D. Talley. The Subpolar Mode Water of the North Atlantic Ocean. J. Phys. Oceanogr., 12:1169-1188, 1982.

[301]
M. P. McCormick, H. M. Steele, P. Hamill, W. P. Chu, and T. J. Swissler. ? J. Atmos. Sci., 39:1387-1397, 1982.

[302]
M. P. McCormick, L. W. Thomason, and C. R. Trepte. Atmospheric effects of the Mt. Pinatubo eruption. Nature, 373:399-404, 1995.

[303]
T. J. McDougall. Thermobaricity, cabbeling and water mass conversion. J. Geophys. Res., 96:5448--?, 1987.

[304]
T. J. McDougall. Neutral surfaces. J. Phys. Oceanogr., 17:1950-1964, 1987.

[305]
J. F. et al. McManus. High-resolution climate records from the North Atlantic during the last interglacial. Nature, 371:326-329, 1994.

[306]
M. J. McPhaden. On the dynamics of equatorial subsurface countercurrents. J. Phys. Oceanogr., 14:1216-1225, 1984.

[307]
Michael J. McPhaden. The Tropical Atmosphere Ocean array is completed. Bull. Amer. Meteor. Soc., 76:739-741, 1995.

[308]
M. J. McPhaden, H. B. Milburn, A. I. Nakamura, and A. J. Shepherd. PROTEUS-Profile Telemetry of Upper Ocean Currents. In Proceedings MTS '90, pages 353-357, Washington, D.C., 1990. Marine Technology Society.

[309]
MEDOC Group. Observations of formation of deep water in the mediterranean sea. Nature, 227:1037-1040, 1970.

[310]
P. F. Meischner, M. Hagen, T. Hauf, D. Heimann, H. Holler, U. Schumann, W. Jaeschke, W. Mauser, and H. R. Pruppacher. The field project Cleopatra, May-July 1992 in Southern Germany. Bull. Am. Meteorol. Soc., 74:401-412, 1993.

[311]
R. T. Menzies and D. M. Tratt. Airborne CO2 coherent lidar for measurments of atmospheric aerosol and cloud backscatter. Applied Optics, 33:5698-5711, 1994.

[312]
G. Mertz and D. G. Wright. Interpretations of the JEBAR term. J. Phys. Oceanogr., 22:301-313, 1992.

[313]
P. W. Mielke. The application of multivariation permutation techniques based on distance functions in the earth sciences. Earth-Sci. Rev., 31:55-71, 1991.

[314]
U. Mikolajewicz, E. Maier-Reimer, T. J. Crowley, and K.-Y. Kim. Effect of Drake and Panamanian gateways on the circulation of an ocean model. Paleoceanog., 8:409-426, 1993.

[315]
R. A. Minzner. The 1976 standard atmosphere and its relationship to earlier standards. Rev. Geophys. Space Phys., 15:375-384, 1977.

[316]
Robert L. Molinari. Subtropical Atlantic Climate Studies (STACS): An update. Oceanography, 2:32-35, 1989.

[317]
R. B. Montgomery. The words naviface and oxyty. J. Marine Res., 27:161-162, 1969.

[318]
R. B. Montgomery. Water characteristics of Atlantic Ocean and of World Ocean. Deep-Sea Res., 5:134-148, 1958.

[319]
E. T. Montgomery. Cruise Report -- Deep Circulation in the Romanche Fracture Zone -- Nov. 22-Dec. 17, 1995. Technical Report 96-12, Woods Hole Oceanogr. Inst., 1996.

[320]
E. T. Montgomery. Cruise Report -- Brazil Basin Tracer Release Experiment. Technical Report in preparation, Woods Hole Oceanogr. Inst., 1997.

[321]
E. T. Montgomery, R. W. Schmitt, J. M. Toole, and K. L. Polzin. Site survey results for the North Atlantic Tracer Release Experiment. EOS Trans., AGU, 73:321, 1992.

[322]
Michael D. Mundt, Geoffrey K. Vallis, and Jian Wang. Balanced models and dynamics for the large-- and mesoscale circulation. JPO, 27:1133-1152, 1997.

[323]
W. A. Naqvi, C. D. Charles, and R. G. Fairbanks. Carbon and oxygen isotope records of benthic foraminifera from the Northeast Indian Ocean: Implications on glacial-interglacial atmospheric CO2 changes. Earth. Plan. Sci. Lett., 121:99-110, 1994.

[324]
A. Neftel, H. Oeschger, J. Schwander, B. Stauffer, and R. Zumbrunn. Ice core sample measurements give atmospheric CO2 content during the past 48,000 yr. Nature, 295:220-223, 1982.

[325]
R. P. Neilson. A mapped atmosphere-plant-soil system for predicting continental scale vegeration distributions. Ecol. Appl., 1994.

[326]
R. S. Nerem. Global mean sea level variations from TOPEX/POSEIDON altimeter data. Science, 268:708-710, 1995.
The TOPEX/POSEIDON satellite altimeter mission has measured global mean sea level every 10 days over the last 2 years with a precision of 4 millimeters, which approaches the requirements for climate change research. The estimated rate of sea level change is +3.9 +/- 0.8 millimeters per year. A substantial portion of this trend may represent a short-term variation unrelated to the long-term signal expected from global warming. For this reason, and because the long-term measurement accuracy requires additional monitoring, a longer time series is necessary before climate change signals can be unequivocally detected.

[327]
C. G. Newhall and S. Self. The volcanic explosivity index (VEI)--an estimate of explosive magnitude for historical volcanism. J. Geophys. Res., 87:1231-1238, 1982.

[328]
M.J. Newman and R.T. Rood. Implications of solar evolution for the earth's early atmosphere. Science, 194:1413-1414, 1977.

[329]
S. Nicholls, B. Brummer, A. Fiedler, A. Grant, T. Hauf, G. Jenkins, C. Readings, and W. Shaw. The structure of the turbulent atmospheric boundary layer. Phil. Trans. Roy. Soc. London A, 308:291--?, 1983.

[330]
P. P. Niiler, A. S. Sybrandy, K. Bi, P.-M. Poulain, and D. Bitterman. Measurements of the water-following capability of Holey-sock and TRISTAR drifters. Deep-Sea Res., ?:(in press), 1995.

[331]
C. A. Nittrouer, D. J. DeMaster, A. G. Figueiredo, and J. M. Rome. AmasSeds: An interdisciplinary investigation of a complex coastal enviroment. Oceanography, 4:3-7, 1991.

[332]
J. J. Noilhan, C. Andre, P. Bougeault, J. Goutorbe, and P. Lacarrere. Some aspects of the HAPEX-MOBILHY programme: The data base and the modelling strategy. Surv. Geophys., 12:31-61, 1991.

[333]
J. M. Oberhuber. Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnic general circulation model. Part I. Model description. J. Phys. Oceanogr., 23:808-829, 1993.

[334]
Y. Ogura and N. A. Phillips. Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19:173-179, 1962.

[335]
A. Ohmura, H. Gilgen, and M. Wild. Global Energy Balance Archive (GEBA), World Climate Program-Water Peoject A7, Rep. 1: Introduction. Technical Report 34, Zuercher Geografische Schriften, 1989.
Available from Prof. A. Ohmura, ETH Zurich, CH-8057 Zurich, Switzerland

[336]
M. Ollitrault and et al. The MARVOR, a multicycle RAFOS float. Sea Tech., 35:39-44, 1994.

[337]
D. W. Oppo and R. G. Fairbanks. Atlantic Ocean thermohaline circulation of the last 150,000 years: Relationship to climate and atmospheric CO2. Paleoceanog., 5:277-288, 1990.

[338]
D. W. Oppo and R. Rosenthal. Cd/Ca changes in a deep Cape Basin core over the past 730,000 years: Response of circumpolar deepwater variability to northern hemisphere ice sheet melting? Paleoceanog., 9:661-675, 1994.

[339]
Alejandro H. Orsi, Thomas Whitworth III, and Worth D. Nowlin Jr. On the meridional extent and fronts of the antarctic circumpolar current. Deep-Sea Research, 42:641-673, 1995.

[340]
E. Ozsoy, A. Hecht, U. Unluata, S. Brenner, H. I. Sur, J. Bishop, M. A. Latif, Z. Rozentraub, and T. Ogur. A synthesis of the Levantine basin circulation and hydrography. Deep-Sea Res. II, 40:1075-1120, 1993.

[341]
Jeffrey D. Paduan, Roland A. De Szoeke, and Robert A. Weller. Inertial oscillations in the upper ocean during the Mixed Layer Dynamics Experiment (MILDEX). J. Geophys. Res., 94:4835-4842, 1989.

[342]
J. Pastor and W. M. Post. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochem., 2:3-28, 1986.

[343]
WMO. Proposal for the Pacific Transport of Heat and Salt (PATHS) Programme. Technical Report WCP-51, World Meteor. Org., 1983.

[344]
Steven L. Patterson and Hellmuth A. Sievers. The Weddell-Scotia Confluence. J. Phys. Oceanogr., 10:1584-1610, 1980.

[345]
R. Pawlowicz, D. M. Farmer, B. Sotirin, and S. Ozard. Shallow-water receptions from the Transarctic Acoustic Propagation Experiment. J. Acoust. Soc. Am., (submitted):?, 1995.

[346]
W. R. Peltier. Ice age paleotopography. Science, 265:195-201, 1994.
A gravitationally self-consistent theory of postglacial relative sea level change is used to infer the variation of surface ice and water cover since the Last Glacial Maximum (LGM). The results show that LGM ice Volume was approximately 35 percent lower than suggested by the CLIMAP reconstruction and the maximum heights of the main Laurentian and Fennoscandian ice complexes are inferred to have been commensurately lower with respect to sea level. Use of these Ice Age boundary conditions in atmospheric general circulation models will yield climates that differ significantly from those previously inferred on the basis of the CLIMAP data set.

[347]
Henry Perkins and Pavel Pistek. Circulation in the Algerian Basin during June 1986. J. Geophys. Res., 95:1577-1585, 1990.

[348]
S. L. Pfirman, D. Bauch, and T. Gammelsrod. The Northern Barents Sea: Water mass distribution and modification. In ?, editor, The Polar Oceans and Their Role in Shaping the Global Environment, pages 77-94. ?, 1994.

[349]
W. J. Pierson, G. Neumann, and R. W. James. Observing and forecasting ocean waves by means of wave spectra and statistics. Technical Report 603, U.S. Dept of the Navy, 1955.

[350]
R. D. Pingree and B. LeCann. A shallow Meddie (a Smeddie) from the secondary Mediterranean salinity maximum. J. Geophys. Res., 98:20,169-20,185, 1993.

[351]
A. R. Piola and D. T. Georgi. Circumpolar properties of Antarctic Intermediate Water and Subantarctic Mode Water. Deep-Sea Res., 29:687-711, 1981.

[352]
A. J. Pitman, Z. L. Yang, J. G. Cogley, and A. Henderson-Sellers. Description of bare essentials of surface transfer for the Bureau of Meterological Research Centre AGCM. Technical Report 32, BMRC, 1991.

[353]
William J. Plant and Werner Alpers. An introduction to SAXON-FPN. J. Geophys. Res., 99:9699-9703, 1994.

[354]
C. M. Platt and co authors. The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research. BAMS, 75:1635-1654, 1994.

[355]
G. Plaut, M. Ghil, and R. Vautard. Interannual and interdecadal variability in 335 years of Central England temperatures. Science, 268:710-713, 1995.
Understanding the natural variability of cliamte is important for predicting its near-term evolution. Models of the oceans' thermohaline and wind-driven circulation show low-frequency oscillations. Long instrumental records can help validate the oscillatory behavior of these models. Singular spectrum analysis applied to the 335-year-long central England temperature (CET) record has identified climate oscillations with interannual (7- to 8-year) and interdecadal (15- to 25-year) periods, probably related to the North Atlantic's wind-driven and thermohaline circulation, respectively, Statistical prediction of oscillatory variability shows CETs decreasing toward the end of this decade and rising again into the middle of the next.

[356]
K. Polzin, K. Speer, J. Toole, and R. Schmitt. Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature, 380:54-57, 1996.

[357]
K. L. Polzin, J. M. Toole, J. R. Ledwell, and R. W. Schmitt. Spatial variability of turbulent mixing in the abyssal ocean. Science, 276:93-96, 1997.

[358]
R. W. Preisendorfer and T. P. Barnett. Numerical model-reality intercomparison tests using small sample statistics. J. Atmos. Sci., 40:1884-1896, 1983.

[359]
Katharine C. Prentice. Bioclimatic distribution of vegetation for general circulation model studies. J. Geophys. Res., 95:11,811-11,830, 1990.

[360]
R. Pritchard and et al. CEAREX drift experiment. EOS, Trans. Am. Geophys. Union, 71:1115-1118, 1990.

[361]
L. Qiao and R. H. Weisberg. Tropical instability wave kinematics: Observations from the Tropical Instability Wave Experiment (TIWE). J. Geophys. Res., 100:8677-8693, 1995.

[362]
B. Qiu, D. A. Koh, C. Lumpkin, and P. Flament. Existence and formation mechanism of the North Hawaiian Ridge Current. JPO, 27:431-444, 1997.

[363]
D. Quadfasel, J.-C. Gascard, and K.-P. Koltermann. Large-scale oceanography in fram strait during the 1984 Marginal Ice Zone Experiment. J. Geophys. Res., 92:6719-6728, 1987.

[364]
R. R. Radick. Stellar variability and global warming. Science, 266:1072, 1994.

[365]
L. B. Railsback, S. C. Ackerly, T. F. Anderson, and J. L. Cisne. Palaeontological and isotope evidence for warm saline deep waters in Ordovician oceans. Nature, 343:156-159, 1990.

[366]
V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann. Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243:57-63, 1989.

[367]
V. Ramanathan, B. Subsilar, G. J. Zhang, W. Conant, R. D. Cess, J. T. Kiehl, H. Grassl, and L. Shi. Warm pool heat budget and shortwave cloud forcing: A missing physics? Science, 267:499-503, 1995.

[368]
Z. Rant. Exergie, ein neues Wort f ur technische arbeitsf ahigkeit. Forsch. Ingenieurwes, 22:36-37, 1956.

[369]
E. Raschke, J. Schmetz adn J. Heitzenberg, R. Kandel, and R. Saunders. The International Cirrus Experiment (ICE): A joint European effort. ESA Journal, 14:193-199, 1990.

[370]
E. B. Rastetter, M. G. Ryan, G. R. Shaver, J. M. Melillo, K. J. Nadelhoffer, J. E. Hobbie, and J. D. Aber. A general biogeochemical model describing the responses of the carbon and nitrogen cycles in terrestrial ecosystems to changes in CO2, climate and nitrogen deposition. Tree Physiology, 9:101-126, 1991.

[371]
J. D. Ray, D. R. Hastie, S. Malle, M. Luria, W. C. Keene, and H. Sievering. Losses and transport of odd nitrogen species over the Western Atlantic Ocean during CASE/WATOX. Global Biogeochemical Cycles, 4:279-295, 1990.

[372]
M. E. Raymo and G. H. Rau. Mid-pliocene warmth: Stronger greenhouse and stronger conveyor. Mar. Micropaleontol., (in press), 1995.

[373]
A. C. Redfield, B. H. Ketchum, and F. A. Richards. The influence of organisms on the composition of sea water. In M. N. Hill, editor, The Sea, Vol. 2, pages 26-77. Interscience, 1963.

[374]
J. L. Reid. Evidence of a South Equatorial Countercurrent in the Pacific Ocean. Nature, 184:209-210, 1959.

[375]
J. L. Reid, W. D. Nowlin, and W. C. Patzert. On the characteristics and circulation of the southwestern Atlantic Ocean. JPO, 7:62-91, 1977.

[376]
P. Richardson and G. Reverdin. Seasonal cycle of velocity in the Atlantic North Equatorial Countercurrent as measured by surface drifters, current meters, and ship drifts. J. Geophys. Res., 92:3691-3708, 1987.

[377]
P. L. Richardson, M. S. McCartney, and C. Maillard. A serach for meddies in historical data. Dyn. Atmos. Oceans, 15:241-265, 1991.

[378]
M. M. Rienecker, C. N. K. Mooers, D. E. Hagan, and A. R. Robinson. A cool anomaly off northern california: An investigation using IR imagery and in situ data. J. Geophys. Res., 90:4807-4818, 1985.

[379]
D. Rind. Components of the ice age circulation. J. Geophys. Res., 92:4241-4281, 1987.

[380]
D. Rind and M. Chandler. Increased ocean heat transports and warmer climate. J. Geophys. Res., 96:7437-7461, 1991.

[381]
D. Rind, R. Goldberg, J. Hansen, C. Rosenzweig, and R. Ruedy. Potential evapotranspiration and the likelihood of future drought. J. Geophys. Res., 95:9983-10004, 1990.

[382]
J. Roberts and O. M. R. Cabral. ABRACOS: A comparison of climate, soil moisture and physiological properties of forests and pastures in the Amazon Basin. Commonwealth For. Rev., 72:310-315, 1993.

[383]
A. R. Robinson and H. Stommel. The oceanic thermocline and the associated thermohaline circulation. Tellus, 11:295-308, 1959.

[384]
A. Robock. The volcanic contribution to climate change of the past 100 years. In M. E. Schlesinger, editor, Greenhouse-Gas-Induced Climate Change: A Critical Appraisal of Simulations and Observations, pages 429-444. Elsevier, 1991.

[385]
D. J. Rochford. Distribution of Banda Intermediate Water in the Indian Ocean. Aust. J. Mar. Freshwater Res., 17:61-76, 1966.

[386]
W. Roether, B. B. Manca, B. Klein, D. Bregant, D. Georgopoulos, V. Beitzel, V. Kovacevic, and A. Luchetta. Recent changes in the Eastern Mediterranean deep water. Science, 271:333-335, 1996.

[387]
J. C. Rogers. The association between the North Atlantic Oscillation and Southern Oscillation in the Northern Hemisphere. Mon. Weather Rev., 112:1999, 1984.

[388]
T. Rossby. On monitoring depth variations of the main thermocline acoustically. JGR, 74:5542-5546, 1969.

[389]
T. Rossby and E. Gottlieb. The Oleander Project: Monitoring the variability of the Gulf Stream and adjacent waters between New Jersey and Bermuda. BAMS, 79:5-18, 1998.

[390]
T. Rossby and et al. The RAFOS System. J. Atmos. Ocean Tech., 3:672-679, 1986.

[391]
W. B. Rossow and R. A. Schiffer. ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72:2-20, 1991.

[392]
Royal Society. The earth's climate and variability of the Sun over recent milennia: geophysical, astronomical and archaeological aspects. Phil. Trans. R. Soc. Lond. A, 330:399-685, 1990.

[393]
T. C. Royer and W. J. Emery. Circulation in the Gulf of Alaska, 1981. Deep-Sea Res., 34:1361-1377, 1987.

[394]
C. Ruf, S. Keihm, B. Subramanya, M. Janssen, and T. Liu. TOPEX/POSEIDON microwave radiometer performance and in-flight calibration. JGR, 99:?, 1994.

[395]
A. Ruiz de Elvira and M. J. Ortiz Bevia. Application of statistical techniques to the analysis and prediction of ENSO: Bayesian oscillation patterns as a prediction scheme. Dyn. Atmos. Oceans, 22:91-114, 1994.
Here we study the low-frequency variability of the tropical Indian and Pacific basins with a new statistical technique. Bayesian oscillation patterns (BOP). To describe the climatic system in this region, zonal wind and sea surface temperature (SST) are the selected variables. Their variabililty can be explained in terms of a reduced number of frequencies and spatial patterns, which are identified for each field via a statistical procedure. A predictive scheme is devised and applied in two forecast experiments using the patterns and frequencies thus identified.

[396]
S. W. Running, T. R. Loveland, L. L. Pierce, R. R. Nemani, and E. R. Hunt Jr. A remote sensing based vegetation classification logic for global land cover analysis. Remote Sens. Environ, 51:39-48, 1995.

[397]
J. Russell and et al. The Halogen Occultation Experiment. J. Geophys. Res., 98:10,777-10797, 1993.

[398]
D. D. Sameoto, L. O. Jaroszynski, and W. B. Fraser. The BIONESS -- new design in multiple net zooplankton samplers. J. Fish. Res. Bd. Can., 37:722-724, 1980.

[399]
A. N. Sanyal, G. Hemming, G. H. Hanson, and W. S. Broecker. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature, 373:234-236, 1995.

[400]
Jorge Sarmiento. A Chemical Tracer Strategy for WOCE: Report of a Workshop held in Seattle, Washington, January 22 and 23, 1987. Technical Report 10, U.S. Planning Office for WOCE, 1988.

[401]
R. Sausen, K. Barthels, and K. Hasselmann. Coupled ocean-atmosphere models with flux correction. Clim. Dyn., 2:154-163, 1988.

[402]
Michael E. Schlesinger and Navin Ramankutty. An oscillation in the global climate system of period 65-70 years. Nature, 367:723-726, 1994.
In addition to the well-known warming of  0.5 deg. C since the middle of the 19th century, global-mean surface temperature records display substantial variability on timescales of a century or less. Accurate prediction of future temperature change requires an understanding of the causes of this variability; possibilities included external factors, such as increasing greenhouse-gas concentrations and anthropogenic sulfate aerosols, and internal factors, both predictable (such as El Nino) and unpredictable (noise). Here we apply singular spectrum analysis (SSA) to four global-mean temperature records and identify a temperature oscillation with a period of 65-70 years. SSA of the surface temperature records for 11 geographical regions shows that the 65-70 year oscillation is the statistical result of 50-88 year oscillations for the North Atlantic Ocean and its bounding Northern Hemisphere continents. These oscillations have obscured the greenhouse warming signal in the North Atlantic and North America. Comparison with previous observations and model simulations suggests that the oscillation arises from predictable internal variability of the ocean-atmosphere system.

[403]
R. W. Schmitt and E. T. Montgomery. Cruise Report -- Oceanus 218, March 20 -- April 9, 1990, Warm Ring Inertial Critical Layer Experiment (WRINCLE). Technical Report 91-33, Woods Hole Oceanogr. Inst., 1991.

[404]
R. W. Schmitt, J. M. Toole, R. L. Koehler, E. C. Mellinger, and K. W. Doherty. The development of a fine-- and microstructure profiler. J. Atmos. Oceanic Techn., 5:484-500, 1988.

[405]
W. J. Schmitz and P. L. Richardson. On the sources of the Florida Current. Deep-Sea Res., 38 (Supplement):379-409, 1991.

[406]
Christian-D. Schonwiese, Rolf Ullrich, Frank Beck, and Jorg Rapp. Solar signals in global climatic change. Climatic Change, 27:259-281, 1994.

[407]
F. A. Schott and H. Stommel. Beta spirals and absolute velocities from different oceans. Deep Sea Res., 25:961-1010, 1978.

[408]
Scripps Institution of Oceanography. Physical and chemical data, CATO Expedition, leg VI. Technical Report 79-3, Scripps Inst. of Oceanogr., 1979.

[409]
Scripps Institution of Oceanography. Physical and chemical data, INDOMED Expedition, leg XIII. Technical Report 79-15, Scripps Inst. of Oceanogr., 1979.

[410]
R. C. Seitz. Thermostad, the antonym of thermocline. J. Mar. Res., 25:203, 1967.

[411]
P. J. Sellers, F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy. An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). J. Geophys. Res., 97:18345-18371, 1992.

[412]
P. J. Sellers, Y. Mintz, Y. C. Sud, and A. Dalcher. A simple biosphere model (SiB) with point micrometeorological and biophysical data. JAS, 43:505-531, 1986.

[413]
B. W. Sellwood, G. D. Price, and P. J. Valdes. Cooler estimates of Cretaceous temperatures. Nature, 370:453-455, 1994.

[414]
N. J. Shackleton and N. G. Pisias. Atmospheric carbon dioxide, orbital forcing, and climate. In E. T. Sundquist and W. S. Broecker, editors, The Carbon Cycle and Atmospheric CO2: Natural variations Archean to Present, number 32 in Geophysical Mono., pages 303-317. Am. Geophys. Union, 1985.

[415]
O. H. Shemdin. Tower Ocean Wave and Radar Dependence Experiment: A Synthesis. J. Geophys. Res., 95:16241-16243, 1990.

[416]
W. J. Shuttleworth. Macrohydrology--The new challenge for process hydrology. J. Hydrol., 100:31-56, 1988.

[417]
G. Siedler, A. Kuhl, and W. Zenk. The Madeira Mode Water. J. Phys. Oceanogr., 17:1561-1570, 1987.

[418]
J. Simpson, R. F. Adler, and G. R. North. A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. BAMS, 69:278-295, 1988.

[419]
S. D. Smith, R. J. Anderson, W. A. Oost, C. Kraan, N. Maat, J. DeCosmo, K. B. Katsaros, K. L. Davidson, K. Bumke, L. Hasse, and H. M. Chadwick. Sea surface wind stress and drag coefficients: The HEXOS results. Boundary-Layer Meterology, 60:109-142, 1992.

[420]
W. O. Smith and D. L. Garrison. Marine ecosystem research at the Weddell Sea ice edge: the AMERIEZ program. Oceanography, 3:19-22, 1990.

[421]
Sabatino Sofia and Peter Fox. Solar variability and climate. Climatic Change, 27:249-257, 1994.

[422]
Todd Sowers, Michael Bender, Dominique Raynaud, Y. S. Korotkevich, and Joe Orchardo. The delta 18O of atmospheric CO2 from air inclusions in the Vostok ice core: timing of CO2 and ice volume changes during the penultimate glaciation. Paleoceanog., 6:679-696, 1991.

[423]
D. W. Spencer, M. P. Bacon, and P. G. Brewer. ? J. Mar. Res., 39:119-138, 1980.

[424]
E. A. Spiegel and G. Veronis. On the Boussinesq approximation for a compressible fluid. Astrophys. J., 131:442-447, 1960.

[425]
Athelstan Spilhaus. A bathythermograph. J. Marine Res., 1:95-100, 1938.

[426]
P. J. Stabeno, R. K. Reed, and J. D. Schumacher. The Alaska Coastal Current: Continuity of transport and forcing. J. Geophys. Res., 100:2477-2485, 1995.

[427]
B. R. Stanton. An oceanographic survey of the Tasman Front. New Zealand Journal of Marine and Freshwater Research, 15:289-297, 1981.

[428]
R. E. Stewart, R. W. Shaw, and G. A. Isaac. Canadian Atlantic Storms Program: The meteorological field project. Bull. Amer. Meteor. Soc., 68:338-345, 1987.

[429]
R. R. Stokes and S. E. Schwartz. The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Test Bed. BAMS, 75:1201-1221, 1994.

[430]
H. Stommel. The western intensification of wind-driven ocean currents. Trans. Am. Geophys. Union, 29:202-206, 1948.

[431]
Henry M. Stommel. Columbus o'donnell iselin. Biographical Memoirs, 64:164-186, 1993.

[432]
H. Stommel, A. B. Arons, and D. Blanchard. An oceanographical curiosity: the perpetual salt fountain. Deep-Sea Res., 3:152-153, 1956.

[433]
H. Stommel, E. D. Stroup, J. L. Reid, and B. A. Warren. Transpacific hydrographic sections at Lats. 43 deg. S and 28 deg. S: the SCORPIO expedition. Deep-Sea Res., 20:1-8, 1973.

[434]
H. Stommel and E. Stommel. The year without a summer. Sci. Am., 240:176-186, 1981.

[435]
Peter H. Stone. Constraints on dynamical transports of energy on a spherical planet. Dyn. Atmos. Oceans, 2:123-139, 1978.
The factors that caontorl the flux of energy across a latitude belt in the atmosphere/ocean system are determined. The results show that, as long as a hemisphere is in equilibrium and as long as the structure of the system is dominated by the planetary scale, the total flux is constrained to peak near 35 deg. lat., the flux per unit area to peak near 45 deg. lat., and the magnitude of the flux is determined primarily by the solar constant, the size of the earth, the tilt of the earth's axis, and the hemispheric mean albedo. The magnitude of the flux is insensitive to the structure and dynamics of the atmosphere/ocean system because the high efficiency of the dynamical transport mechanisms and because of the negative correlation between local planetary albedo and local thermal emissions to space.

[436]
R. B. Stothers. The great Tambora eruption in 1815 and its aftermath. Science, 224:1191-1198, 1984.

[437]
L. Stramma. Geostrophic transport of the South Equatorial Current in the Atlantic. J. Mar. Res., 49:281-294, 1991.

[438]
D. E. Strebel, J. A. Newcomer, J. P. Ormsby, F. G. Hall, and P. J. Sellers. The FIFE information system. IEEE Trans. Geosci. Remote Sens., 28:703-710, 1990.

[439]
H. Suess. Radiocarbon concentration in modern wood. Science, 122:415-417, 1955.

[440]
T. Suga, Y. Takei, and K. Hanawa. Thermostad distribution in the North Pacific Subtropical Gyre: The Central Mode Water and the Subtropical Mode Water. JPO, 27:140-152, 1997.

[441]
A. Svansson. Physical and chemical oceanography in the Skaggerak and the Kattegat. 1. Open sea conditions. Technical Report 1, Fish. Board Swed. Inst. Mar. Res., 1975.

[442]
SWAMP group. Sea wave modeling project (SWAMP). An intercomparison study of wind wave prediction models, part 1: Principal results and conclusions. In SWAMP group, editor, Ocean Wave Modeling, page ? Plenum, 1985.

[443]
SWIM group. Shallow water intercomparisoin of wave prediction models (SWIM). Q. J. Royal Meteorol. Soc., 111:1087-1113, 1985.

[444]
J. H. Swift. The circulation of the Denmark Strait and Iceland-Scotland overflow waters in the North Atlantic. Deep-Sea Res., 31:1339-1355, 1984.

[445]
C. T. Swift. ESTAR - The Electronically Scanned Thinned Array Radiometer for remote sensing measurement of soil moisture and ocean salinity. Technical Report 4523, NASA, 1993.

[446]
J. H. Swift, K. Aagaard, and S.-A. Malmberg. The contribution of Denmark Strait overflow to the deep North Atlantic. Deep-Sea Res., 27:29-42, 1980.

[447]
A. Sy. Investigation of large-scale circulation patterns in the central North Atlantic: The North Atlantic Current, the Azores Current, and the Mediterranean Water plume in the area of the Mid-Atlantic Ridge. Deep-Sea Res., 35:383-413, 1988.

[448]
T. Takahashi, W. S. Broecker, and S. Langer. Redfield ratio based on chemical data from isopycnal surfaces. JGR, 90:6907-6924, 1985.

[449]
L. D. Talley. Distribution and formation of north pacific intermediate water. J. Phys. Oceanogr., 23:517-537, 1993.

[450]
L. D. Talley and M. S. McCartney. Distribution and circulation of Labrador Sea Water. J. Phys. Oceanogr., 12:1189-1205, 1982.

[451]
L. D. Talley and M. S. McCartney. Eighteen Degree Water variability. J. Marine Res., 40 (Supplement):757-775, 1982.

[452]
J. P. Tarpley, S. R. Schneider, and R. L. Money. Global vegetation indices from NOAA-7 meteorological satellite. J. Climate Appl. Meteor., 23:491-494, 1984.

[453]
E. L. Taylor, T. N. Taylor, and R. Cuneo. The present is not the key to the past: A polar forest from the Permian of Antarctica. Science, 257:1675-1677, 1992.

[454]
K. E. Taylor and J. E. Penner. Response of the climate system to atmospheric aerosols and greenhouse gases. Nature, 369:734-737, 1994.

[455]
K. C. et al. Taylor. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature, 366:549-552, 1993.

[456]
William J. Teague, Michael J. Carron, and Patrick J. Hogan. A comparison between the Generalized Digital Environmental Model and Levitus climatologies. J. Geophys. Res., 95:7167-7183, 1990.

[457]
W. J. Teague, E. J. Molinelli, and M. J. Carron. A new system for management of the Master Oceanographic Observation Data Set (MOODS). Eos Trans. AGU, 68:553, 558-559, 1987.

[458]
W. C. Thacker and R. Raghunath. The rigid lid's contribution to the ill-conditioning of oceanic inverse problems. J. Geophys. Res., 99:10,131-10,141, 1994.

[459]
R.S. Thompson. Pliocene environments and climates in the western United States. Quat. Sci. Rev., 10:115-132, 1991.

[460]
S.L. Thompson and D. Pollard. A global climate model (GENESIS) with a land-surface-transfer (LSX) scheme: Part 1. Present-climate simulation. J. Climate, 1994.

[461]
C. Wyville Thomson and John Murray. Reports on the scientific results of the voyage of h. m. s. challenger during the years 1873-1876. Technical report, Royal Society of London, 1884-1895. About fifty volumes.

[462]
David J. Thomson. Spectrum estimation and harmonic analysis. Proc. IEEE, 70:1055-1096, 1982.

[463]
David J. Thomson. Time series analysis of Holocene climate data. Phil. Trans. R. Soc. Lond. A, 330:601-616, 1990.

[464]
David J. Thomson. Quadratic-inverse spectrum estimates: applications to palaeoclimatology. Phil. Trans. R. Soc. Lond. A, 332, 1990.

[465]
Richard E. Thomson and W. J. Emery. The Haida Current. J. Geophys. Res., 91:845-861, 1986.

[466]
C. W. Thornthwaite. An approach toward a rational classification of climate. Geogr. Rev., 38:55-89, 1948.

[467]
Albert Tolkatchev. Global Sea Level Observing System (GLOSS). Marine Geodesy, 19:21-62, 1996.

[468]
K. L. Tracey and D. R. Watts. The SYNOP experiment: Thermocline depth maps for the Central Array October 1987 to August 1990. Technical Report 91-5, University of Rhode Island Graduate School of Oceanography, 1991.

[469]
Kevin E. Trenberth. The definition of El Ni~ no. BAMS, 78:2771-2777, 1997.

[470]
C. Troll and K. H. Paffen. Karte Der Jahreszeitenklimate der Erde. Erkund. Arch. Wiss Geogr., 18:5-28, 1964.

[471]
M. Tsuchiya. A subsurface north equatorial countercurrent in the eastern Pacific Ocean. J. Geophys. Res., 77:5981-5986, 1972.

[472]
M. Tsuchiya. Subsurface countercurrents in the eastern equatorial Pacific Ocean. J. Mar. Res., 33 (suppl.):145-175, 1975.

[473]
M. Tsuchiya. Circulation of the Antarctic Intermediate Water in the North Atlantic Ocean. J. Mar. Res., 47:747-755, 1989.

[474]
C. J. Tucker, I. Y. Fung, C. D. Keeling, and R. H. Gammon. Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature, 319:195-199, 1986.

[475]
C. J. Tucker, J. R. G. Townshend, and T. E. Goff. African land-cover classification using satellite data. Science, 227:369-375, 1985.

[476]
R. P. Turco, O. B. Toon, T. P. Ackerman, J. B. Pollack, and C. Sagan. Nuclear winter: Global consequences of multiple nuclear explosions. Science, 222:1283-1292, 1983.

[477]
R. P. Turco, O. B. Toon, T. P. Ackerman, J. B. Pollack, and C. Sagan. Climate and smoke: An appraisal of nuclear winter. Science, 247:166-176, 1990.

[478]
A. M. Tushingham and W. R. Peltier. Validation of the ICE-3G model of Wurm-Wisconsin deglaciation using a global data base of relative sea level history. JGR, 97:3285-3304, 1992.

[479]
U. S. Science Steering Committee for WOCE. WOCE Discussions of Physical Processes: Reports of U.S. Subject Meetings. Technical Report 5, U.S. Planning Office for WOCE, 1986.

[480]
R. Vakkayil, H. C. Graber, and W. G. Large. Ambient noise measurement with a WOTAN during the surface wave dynamics experiment. Technical Report 96-004, RSMAS, 1996.

[481]
Hendrik M. van Aken, Gereon Budeus, and Michael Hahnel. The anatomy of the Arctic Frontal Zone in the Greenland Sea. J. Geophys. Res., 100:15999-16014, 1995.

[482]
J. van der Burgh, H. Visscher, D. L. Dilcher, and W. M. Kurschner. Paleoatmospheric signatures in Neogene fossil leaves. Science, 260:1788-1790, 1993.

[483]
J. C. Van Leer, W. Duing, R. Erath, E. Kennelly, and A. Speidel. The Cyclosonde: An unattended vertical profiler for scalar and vector quantities in the upper ocean. Deep-Sea Res., 21:385-400, 1974.

[484]
H. Van Loon and J. C. Rogers. The seesaw in winter temperatures between Greenland and Northern Europe: Part I: General description. Mon. Weather Rev., 106:296-310, 1978.

[485]
J. Van Mieghem. The energy available in the atmosphere for conversion into kinetic energy. Beitr. Phys. Atmos., 29:129-142, 1956.

[486]
L. M. Van Valen. A new evolutionary law. Evolutionary Theory, 1:1-30, 1973.

[487]
Jorge Vazquez-Cuervo, Jordi Font, and Juan J. Martinez-Benjamin. Observations on the circulation of the Alboran Sea using ERS-1 altimetry and sea surface temperature data. J. Phys. Oceanogr., 26:1439, 1996.

[488]
R. Vautard and M. Ghil. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D, 35:395-424, 1989.

[489]
Robert Vautard, Pascal Yiou, and Michael Ghil. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58:95-126, 1992.

[490]
VEMAP Research Group. VEMAP: a comparison of biogeography and biogeochemistry models in the context of global climate change. Glob. Biogeochem. Cyc., in press.

[491]
George Veronis. Henry melson stommel. J. Marine Res., 50:i-viii, 1992.

[492]
D. Verseghy. CLASS-A Canadian land surface scheme for GCMs. I: Soil model. Int. J. Climatol., 11:111-133, 1991.

[493]
D. Verseghy, N. A. McFarlane, and M. Lazare. CLASS-A Canadian land surface scheme for GCMs. II: Vegetation model and coupled runs. Int. J. Climatol., 13:347-370, 1993.

[494]
J. M. Wallace and D. S. Gutzler. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev., 109:784-812, 1981.

[495]
John M. Wallace, Yuan Zhang, and James A. Renwick. Dynamic contribution to hemispheric mean temperature trends. Science, 270:780-783, 1995.
On the basis of land station station from the N.H., it was determined that roughly half of the temporal variance of monthly mean hemispheric mean anomalies in surface air temperature during the period from 1900 through 1990 were linearly related to the amplitude of a distinctive spatial pattern in which the oceans are anomalously cold and the continents are anomalously warm poleward of 40 degrees north when the hemisphere is warm. Apart from an upward trend since 1975, to which El Nino has contributed, the amplitude time series associated with this pattern resembles seasonally dependent white noise. It is argued that the variability associated with this pattern is dynamically induced and is not necessarily an integral part of the fingerprint of global warming.

[496]
E. J. Walsh, D. W. Hancock III, D. E. Hines, R. N. Swift, and J. F. Scott. Directional wave spectra measured with the surface contour radar. J. Phys. Oceanogr., 15:566-592, 1985.

[497]
WAMDI Group. The WAM model-a third generation ocean wave prediction model. J. Phys. Oceanogr., 18:1775-1810, 1988.

[498]
WAMEX. The West African Monsoon Experiment (WAMEX) Atlas. Technical Report 35, WMO, 1990.

[499]
Bruce A. Warren, Joseph H. LaCasce, and Paul E. Robbins. On the obscurantist physics of ``form drag'' in theorizing about the circumpolar current. J. Phys. Oceanogr., 26:2297-2301, 1996.

[500]
A. J. Watson and J. E. Lovelock. Biological homeostasis of the global environment: The parable of Daisyworld. Tellus, 35B:284--?, 1983.

[501]
T. Webb. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio, 67:75-91, 1986.

[502]
Peter J. Webster and Robert A. Houze Jr. The Equatorial Mesoscale Experiment (EMEX): An overview. Bull. Amer. Meteor. Soc., 72:1481-1505, 1991.

[503]
P. Welander. An advective model of the ocean thermocline. Tellus, 11:309-318, 1959.

[504]
Robert A. Weller. Overview of the Frontal Air-Sea Interaction Experiment (FASINEX): A study of air-sea interaction in a region of strong oceanic gradients. J. Geophys. Res., 96:8501-8516, 1991.

[505]
R. A. Weller and R. G. Davis. A vector measuring current meter. Deep-Sea Res., 27A:565-582, 1980.

[506]
R. A. Weller, M. A. Donelan, M. G. Briscoe, and N. E. Huang. Riding the crest: A tale of two wave experiments. Bull. Am. Meteorol. Soc., 72:163-183, 1991.

[507]
J. W. Wells. Coral growth and geochronometry. Nature, 197:948-950, 1963.

[508]
T. Whitworth III. Zonation and geostrophic flow of the Antarctic Circumpolar Current at Drake Passage. Deep-Sea Research, 27:497-507, 1980.

[509]
III Whitworth, Thomas and Worth D. Nowlin Jr. Water masses and currents of the Southern Ocean at the Greenwich Meridian. JGR, 92:6462-6476, 1987.

[510]
G. A. Wick, W. J. Emery, and P. Schluessel. A comprehensive comparison between satellite-measured skin and multichannel sea surface temperature. J. Geophys. Res., 97:5569-5595, 1992.

[511]
H. R. Widditsch. SPURV, The first decade. Technical Report 7215, Univ. of Washington Applied Physics Laboratory, 1973.

[512]
P. H. Wiebe, K. H. Burt, S. H. Boyd, and A. W. Morton. A multiple opening/closing net and environmental sensing system for sampling zooplankton. J. Mar. Res., 34:313-326, 1976.

[513]
Bruce A. Wielicki, Robert D. Cess, Michael D. King, David A. Randall, and Edwin F. Harrison. Mission to Planet Earth: Role of clouds and radiation in climate. BAMS, 76:2125-2153, 1995.

[514]
Susan Wijffels, Eric Firing, and John Toole. The mean structure and variability of the Mindanao Current at 8° N. J. Geophys. Res., 100:18421-18435, 1995.

[515]
R. L. Wilby. Non-stationarity in daily precipitation series: Implications for GCM down-scaling using atmospheric circulation indices. Int. J. Climatology, 17:439-454, 1997.

[516]
John L. Wilkin, James V. Mansbridge, and Katherine S. Hedstrom. An application of the capacitance matrix method to accomodate masked land areas and island circulations in a primitive equation ocean model. Int. J. Num. Meth. Fluids, 20:649-662, 1995.

[517]
Jorge E. Willemsen. Analysis of SWADE Discus N wind speed and wave height time series. Part I: Discrete wavelet packet representations. J. Atmosph. Oceanic Techn., 12:1248-1270, 1995.

[518]
P.J.S. Williams, G. Crowley, K. Schlegel, T.S. Virdi, I. McCrea, G. Watkins, N. Wade, J. K. Hargreaves, T. Lachlan-Cope, H. Muller, J. E. Baldwin, P. Warner, A. P. van Eyken, M. A. Hapgood, and A. S. Rodger. The generation and propagation of atmospheric gravity waves observed during the Worldwide Atmospheric Gravity-wave Study (WAGS). J. Atmos. Terr. Phys., 50:323-338, 1988.

[519]
D.L. Williamson, J.T. Kiehl, V. Ramanathan, R.E. Dickinson, and J.J. Hack. Description of NCAR Community Climate Model (CCM1). Technical Report NCAR/TN-285+STR, National Center for Atmospheric Research, 1987.

[520]
M. F. Wilson and A. Henderson-Sellers. Land cover and soils data sets for use in general circulation climate models. J. Climatol., 5:119-143, 1985.

[521]
W. Douglas Wilson, E. Johns, and R. L. Molinari. Upper layer circulation in the western tropical North Atlantic Ocean during August 1989. J. Geophys. Res., 99:22513-22523, 1994.

[522]
S. L. Wing and D. R. Greenwood. Fossils and fossil climate: The case for equable continental interiors in the Eocene. Phil. Trans. R. Soc. B, 41:243-252, 1993.

[523]
S. D. Woodruff, R. J. Slutz, R. L. Jenne, and P. M. Steurer. A Comprehensive Ocean-Atmosphere Data Set. Bull. Amer. Meteor. Soc., 68:1239-1250, 1987.

[524]
P. F. Worcester. Reciprocal acoustic transmissions in a midocean environment. J. Acoust. Soc. Am., 62:895-905, 1977.

[525]
L. V. Worthington. The 18° Water in the Sargasso Sea. Deep-Sea Res., 5:297-305, 1959.

[526]
David Hamilton Wright. Species-energy theory: an extension of species-area theory. Oikos, 41:496-506, 1983.

[527]
K. Wyrtki, E. Firing, D. Halpern, R. Knox, G. J. McNally, W. C. Patzert, E. D. Stroup, B. A. Taft, and R. Williams. The Hawaii-Tahiti Shuttle Experiment. Science, 211:22-28, 1981.

[528]
C. J. Yapp and H. Poths. Ancient atmospheric CO2 pressures inferred from natural goethites. Nature, 355:342-344, 1992.

[529]
K. Yemane. Contribution of Late Permian palaeogeography in maintaining a temperature climate in Gondwana. Nature, 361:51-54, 1993.

[530]
Y. You and T. J. McDougall. Neutral surfaces and potential vorticity in the world's oceans. JGR, 95:13,235-13,261, 1990.

[531]
Ein-Fen Yu, Roger Francois, and Michael P. Bacon. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature, 379:689-694, 1996.

[532]
Su Yu-song and Weng Xue-chuan. Water masses in China Seas. In Zhou Di, Liang Yuan-Bo, and Zeng Cheng-Kui, editors, Oceanology of China Seas -- Volume 1, pages 3-16. Kluwer Academic Publ., 1994.

[533]
J. C. Zachos, L. D. Stott, and K. C. Lohmann. Evolution of early Cenozoic marine temperatures. Paleoceanog., 9:353-387, 1994.

[534]
Zubin Zeng and Roger A. Pielke. Landscape-induced atmospheric flow and its parameterization in large-scale numerical models. J. Clim., 8:1156-1177, 1995.

[535]
Y. Zhang, J. M. Wallace, and N. Iwasaka. Is climate variability over the North Pacific a linear response to ENSO? J. Clim., 9:1468-1478, 1996.